Math 531 Problem Set \#10 Due 11/10/04

1. Let $m>2$ be an integer that is not a prime power and let ξ_{m} be a primitive m-th root of unity. Show that $N_{\mathbb{Q}\left(\xi_{m}\right) / \mathbb{Q}}\left(1-\xi_{m}\right)= \pm 1$.
2. Let L be a degree n field extension of \mathbb{Q}. Let $B \subset L$ be a ring that is integral over \mathbb{Z} and has field of fractions L. Let $\sigma_{1}, \ldots, \sigma_{n}$ be the n distinct embeddings $\sigma: L \longrightarrow \mathbb{C}$. Show that for any basis w_{1}, \ldots, w_{n} for B as an A-module, we have

$$
\Delta(B / \mathbb{Z})=\left(\operatorname{det}\left[\sigma_{i}\left(w_{j}\right)\right]\right)^{2}
$$

[Hint: Multiply $\left[\sigma_{i}\left(w_{j}\right)\right.$] by its transpose and use the fact (that you should prove) that $\mathrm{T}_{L / K}(y)=\sigma_{1}(y)+\cdots+\sigma_{n}(y)$ for any $y \in L$.]

3-5 Ex. 1,3,4 from p. 62.
6. p. 65, Ex. 1.
7. Let m be a positive integer and let ξ_{m} be a primitive m-th root of unity. Show that $\mathrm{T}_{\mathbb{Q}\left(\xi_{m}\right) / \mathbb{Q}}\left(\xi_{m}\right)=\mu(m)$, where μ is the Mobius function defined in Ex. 1, p. 57 .
8. Let \mathcal{O}_{L} be the integral closure of \mathbb{Z} in some finite field extension L of \mathbb{Q}. Let M be any positive real number. Show that there are finitely many ideals $I \subset \mathcal{O}_{L}$ such that $\mathrm{N}_{\mathcal{O}_{L} / \mathbb{Z}}(I) \leq M$.

