Math 513 Tom Tucker
 NOTES FROM CLASS 9/29

We were proving the following:
Theorem 12.1. Let $L \supseteq K$ be a finite extension of fields. Then the bilinear form $(x, y)=\mathrm{T}_{L / K}(x y)$ is nondegenerate $\Leftrightarrow L$ is separable over K.

Proof. (\Rightarrow) We did last time.
(\Leftarrow) We will denote $\mathrm{T}_{L / K}(x y)$ as (x, y). Recall the following: Choosing a basis m_{1}, \ldots, m_{n} and writing x and y as vectors in terms of the m_{i} we can write

$$
\mathbf{x} A \mathbf{y}^{T}
$$

for some matrix A. The matrix A is given by $\left[a_{i j}\right]$ where $a_{i j}=\left(m_{i}, m_{j}\right)$ since we want

$$
\left(\sum_{i=1}^{n} r_{i} a_{i}, \sum_{j=1}^{n} s_{j} a_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} r_{i} s_{j}\left(a_{i}, a_{j}\right) .
$$

It is easy to see that that the form will be nondegenerate if and only if A is invertible, since $A \mathbf{y}=0$ if and only $(x, y)=0$ for every $y \in L$.

Now, since L is separable over K, we can write $L=K(\theta)$ for $\theta \in L$ and use $1, \theta, \ldots, \theta^{n-1}$ as a basis for L over K. Then we can write the matrix $A=\left[a_{i j}\right]$ above with

$$
a_{i j}=\left(\theta^{i}, \theta^{j}\right)=\mathrm{T}_{L / K}\left(\theta^{i+j}\right) .
$$

It isn't too hard to calculate these coefficients explicitly. In fact, if $\theta_{1}, \ldots, \theta_{n}$ are the roots of the minimal polynomial of θ, then

$$
\mathrm{T}_{L / K}(\theta)=\sum_{\ell=1}^{n} \theta_{\ell},
$$

from what we proved earlier. Similarly, we have

$$
\mathrm{T}_{L / K}\left(\theta^{i+j}\right)=\sum_{\ell=1}^{n} \theta_{\ell}^{i+j}
$$

There is a trick to finding the determinant of such a matrix. Recall the van der Monde matrix in $V:=V\left(\theta_{1}, \ldots, \theta_{n}\right)$. It is the matrix

$$
\left(\begin{array}{lll}
1 & \cdots & 1 \\
\theta_{1} & \cdots & \theta_{n} \\
\cdots & \cdots & \cdots \\
\theta_{1}^{n} & \cdots & \theta_{n}^{n}
\end{array}\right)
$$

1

The determinant of this matrix is

$$
\operatorname{det}(V)=\prod_{i<j}\left(\theta_{i}-\theta_{j}\right)
$$

It is easy to check that $V V^{T}=A$ (a messy but easy calculation). Thus,

$$
\operatorname{det}(A)=\operatorname{det}(V) \operatorname{det}\left(V^{T}\right)=\operatorname{det}(V)^{2}=\left(\prod_{i<j}\left(\theta_{i}-\theta_{j}\right)\right)^{2} \neq 0
$$

since $\theta_{i} \neq \theta_{j}$ for $i \neq j$ and we are done.

Now, given a bilinear from (x, y) on a vector space W, we get a map from $\psi: W \longrightarrow W^{*}$, where W^{*} is the dual of W by sending $x \in W$ to the map $f(y)=(x, y)$. When the form is nondegenerate this map is injective. Thus, by dimension counting, when W is finite dimensional and the form is nondegenerate, we get an isomorphism of vector spaces. In particular, we can do the following. Let u_{1}, \ldots, u_{n} be a basis for W over V. Then for each u_{i}, there is a map $f_{i} \in W^{*}$ such that $f_{i}\left(u_{j}\right)=\delta_{i j}$ where $\delta_{i j}$ is the Kronecker delta, which means that $\delta_{i j}=0$ if $i \neq j$ and $\delta_{i j}=1$ if $i=j$. Since $f_{i}(x)=\left(v_{j}, x\right)$ for some $v_{j} \in W$, we obtain a dual basis v_{1}, \ldots, v_{n} with the property that

$$
\left(v_{i}, u_{j}\right)=\delta_{i j} .
$$

Thus, we have the following.
Theorem 12.2. (Dual basis theorem) Let $L \supseteq K$ be a finite, separable extension of fields. Let u_{1}, \ldots, u_{n} be basis for L as a K-vector space. Then there is a basis v_{1}, \ldots, v_{n} for L as a K-vector space such that

$$
\mathrm{T}_{L / K}\left(v_{i}, u_{j}\right)=\delta_{i j} .
$$

Proof. Since $(x, y)=\mathrm{T}_{L / K}(x y)$ is a nondegenerate bilinear form on L (considered as a K-vector space), we may apply the discussion above.

Definition 12.3. Let $L \supseteq K$ be a separable field extension. Let M be a submodule of L. We define M^{\dagger} to be set

$$
\left\{x \in L \mid T_{L / K}(x y) \in A \text { for every } y \in M\right\}
$$

Remark 12.4. It is clear that $M \subseteq N \Rightarrow M^{\dagger} \supseteq N^{\dagger}$, by definition of the dual module.

Lemma 12.5. Let M be an A-submodule of L for which

$$
M=B u_{1}+\cdots+B u_{n}
$$

for u_{1}, \ldots, u_{n} a basis for L over K. Then M^{\dagger} is equal to $B v_{1}+\cdots+B v_{n}$ for v_{1}, \ldots, v_{n} a dual basis for u_{1}, \ldots, u_{n} with respect to the bilinear form induced by the trace.
Proof. Let $x \in L$. Then $x \in M^{\dagger}$ if and only if $T_{L / K}\left(x u_{i}\right) \in A$ for each u_{i}. Writing x as $\sum_{i=1}^{n} \alpha_{i} v_{i}$ with $\alpha_{i} \in K$, we see that $T_{L / K}\left(x u_{i}\right)=\alpha_{i}$, so $T_{L / K}\left(x u_{i}\right) \in R$ if and only if $\alpha_{i} \in R$. This completes our proof.
Theorem 12.6. Let A be a Dedekind domain with field of fractions K and let $L \supseteq K$ be a finite, separable extension of fields. Let B be the integral closure of A in L. Then B is Dedekind.

Proof. We already know that B is 1-dimensional, integrally closed, and an integral domain. We need only show that it is Noetherian.

Then $B \subset B^{\dagger}$ since B is integral over A (recall B integral over A means that the coefficients of the minimal polynomial for B over A are all in A). Now, we choose a basis u_{1}, \ldots, u_{n} for L over K. I claim that we can choose the u_{i} to be in B. This is because for any $u \in L$ we have

$$
u^{m}+\frac{x_{m-1}}{y_{m-1}} u^{m-1}+\cdots+\frac{x_{0}}{y_{0}}=0
$$

with x_{i} and y_{i} in A. Replacing u with $u^{\prime}=\prod_{i=1}^{m} y_{i}$ and multiplying through by $\left(\prod_{i=1}^{m} y_{i}\right)^{m}$ converts this into an integral monic equation in u^{\prime} as we've seen before. Thus, we can take our basis u_{i}, replace each u_{i} with a multiple of u_{i} and still have a basis. Let v_{1}, \ldots, v_{n} be a dual basis for u_{1}, \ldots, u_{n} with respect to the trace form. Then the A-module generated by the v_{i} contains B^{\dagger}. So we have

$$
B \subseteq B^{\dagger} \supseteq A v_{1}+\cdots+A v_{n}
$$

which implies that B is contained in a finitely generated A-module, which in turn implies that B is Noetherian as an A-module. Hence, B is Noetherian as a B-module and is a Noetherian ring.

