
Math 531 Tom Tucker
NOTES FROM CLASS 9/24

Back to showing that OK is Dedekind. All we need is to do is show that
OK is Noetherian and one-dimensional. For R-modules (R a ring), it is
easy to see that M satisfies the Noetherian ascending chain condition
if and only if every submodule of M is finitely generated (as an R-
module).

Proposition 10.1. Let R be a ring, let M ′ and M ′′ be Noetherian
R-modules and let

0 −→ M ′ −→ M −→ M ′′ −→ 0

be an exact sequence of R-modules. Then M is Noetherian.

Proof. We denote the map from M ′ into M as i and the map from M to
M ′′ as φ. It will suffice to show that every submodule N of M is finitely
generated. Since φ(N) is a submodule N of M ′′ it is finitely generated
by, say, x1, . . . , xm. Since N ∩ i(M ′), which we denote as N ′, is a sub-
module of i(M ′), it is finitely generated by, say, y1, . . . , yn. For each xi,
let zi ∈ N have the property that φ(zi) = xi and let N ′′ be the module
they generate in N . Then N is generated by y1, . . . , yn, z1, . . . , zm since
given any t ∈ N we can write φ(t) =

∑m
i=1 riφ(zi), so

φ(t)−
m∑

i=1

rizi ∈ N ∩ i(M),

and N = N ′ + N ′′. �

Corollary 10.2. Let A be a Noetherian ring and let M be a finitely
generated A-module. Then M is a Noetherian A-module

Proof. We proceed by induction on the number of generators of M as
an A-module. If M has one generator, then it is isomorphic to some
quotient of A, so we’re done. Otherwise, let x1, . . . , xn generate M and
write

0 −→ Rxn −→ M −→ M/(Rxn) −→ 0.

Then M/(Rxn) is generated by the images of x1, . . . , xn−1, so must
be Noetherian by the inductive hypothesis. By the Lemma above, M
must be Noetherian. �

Corollary 10.3. Let A be a Noetherian ring and let B ⊇ A be finitely
generated as an A-module. Then B is a Noetherian ring.

Proof. By the corollary above, B is a Noetherian A-module, so every
ideal of B is finitely generated as an A-module, hence also as a B-
module. �
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What’s the problem in general then for showing that OL is Dedekind
for L a number field? The big problem is showing that it isOL is finitely
generated as a Z-module. It is integrally closed and we alter one of the
Lemmas above to show that it is one-dimensional. Here is the proof of
that.

Lemma 10.4. Let A be a field and let B ⊇ A be an integral domain
that is integral over A. Then B is a field.

Proof. Any nonzero prime Q of B must intersect A in a nonzero ideal,
but A has no nonzero ideals. �

Proposition 10.5. Let A and B be integral domains with A ⊂ B
and B integral over A. Suppose that A is 1-dimensional. Then B is
1-dimensional.

Proof. First, note that B cannot be 0-dimensional; that is, it cannot
be a field (I’ll fix up the proof of this next time). Let Q be a nonzero
prime in B. Then Q ∩ A = P for P a nonzero prime of A. Thus, we
have a natural inclusion

A/P ⊆ B/Q.

Since B is integral over A, every element of B/Q is algebraic over A/P .
Thus, B/Q is a field, since any domain that is an algebraic extension
of a field is itself a field. �

So all we need to do is show that OL is Noetherian for a number
field L. We’ll show something a little more general. We’ll show the
following.

Theorem 10.6. Let A be a Dedekind domain with field of fractions K.
Let L be a finite separable extension of A. Then the integral closure B
of A in L is a Dedekind domain.

From some work we’ve done, all we’ll have to do is show that B is
contained in a finitely generated A-module. We’ll use something called
a dual basis, the existence of which is proven using the separable basis
theorem.

The separable basis theorem. Here is the basic set-up for today. Let
L be a finite algebraic extension of degree n over K. Since L is a vector
space over K and multiplication by an element x in L preserves the
K-structure of L, we see that

rx : z 7→ xz
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is a K-linear invertible map from L to L. Given a basis m1, . . . ,mn for
L over K, we can write

rxmi =
n∑

i=1

aijmj

for m1, . . . ,mn. We have the usual definitions for the norm and trace
of rx below

TL/K(x) := TL/K(rx) =
n∑

i=1

aii

NL/K(x) := NL/K(rx) = det([aij]).

In other words, if rx gives the matrix M , then the trace is the sum
of the diagonal elements and the norm is the product of the diagonal
elements. It turns out that this definition doesn’t depend on the choice
of basis. This is a standard fact from linear algebra. It follows from
the fact that for any matrix n× n M and any invertible n× n matrix
U , we have

TL/K(M) = TL/K(UMU−1)

and
NL/K(M) = NL/K(UMU−1).

You may recall in fact that the characteristic polynomial det(λI −
[aij]) of a matrix is invariant under conjugation, and that by putting a
matrix into upper-triangular form [aij], the norm NL/K(M) is (−1)n

times the constant term of the characteristic polynomial and that
TL/K(M) is −1 times the the coefficient of λn−1. Recall that by Cayley-
Hamilton each b ∈ L must satisfy its own characteristic polynomial
P (λ) = 0 where P (λ) = det(λI − [aij]). Thus, when L = K(b), the
polynomial P (λ) has the same degree as the minimal polynomial for b
over K and must therefore be the minimal monic polynomial for b over
K. This gives us an easy definition of the trace and norm in terms of
the minimal polynomial for b over K. Suppose that the minimal monic
for b over K is given by

f(b) = bn + an−1b
n−1 + · · ·+ a0 = 0.

Then
TK(b)/K(b) = −an−1 =

∑
bi

−bi

and
NK(b)/K(b) = (−1)na0 = (−1)n

∏
bi

bi,

where the bi are the conjugates of bi in an algebraic closure of K.
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Let (·, ·) be the bilinear pairing given by (a, b) = TL/K(ab) for a, b ∈
L. It is easy to see that this is a K-bilinear pairing. We’ll show the
following next time.

Theorem 10.7. The trace pairing given above is nondegenerate if and
only if L is separable over K.


