Math 531 Tom Tucker
NOTES FROM CLASS 9/22
Note about the homework
The following is an immediate consequence of Problems 5 and 6 from the homework you just handed in.
Theorem 9.1. Let R be a Noetherian integral domain of dimension 1. Then the following are equivalent
(1) R is integrally closed;
(2) R is a Dedekind domain.

Proof. Since $R=\cap_{\mathcal{P} \neq 0} R_{\mathcal{P}}$ by Problem 6, it follows from Problem 5 that R is integrally closed if and only if each $R_{\mathcal{P}}$ is integrally closed.

A note on definitions: Fractional ideals are not generally always assume to be finitely generated. So here's what we have from last time with this convention.
Lemma 9.2. Let J be a finitely generated fractional ideal of an integral domain R with field of fractions K and let S be a multiplicative set S in R not containing 0. Then $S^{-1} R(R: J)=\left(S^{-1} R: S^{-1} R J\right)$.

All invertible ideals are automatically finitely generated, though.
Lemma 9.3. Let J be a fractional ideal of an integral domain R. Then J is invertible $\Leftrightarrow J$ is finitely generated and $R_{\mathcal{M}} J$ is an invertible fractional ideal of $R_{\mathcal{M}}$ for every maximal ideal \mathcal{M} of R.
Proof. (\Rightarrow) Let J be an invertible ideal ideal of R. Then we can write

$$
\sum_{i=1}^{k} n_{i} m_{i}=1
$$

with $n_{i} \in(R: J)$. Since $n_{i} J \in R$ for each i, we can write any $y \in J$ as $\sum_{i=1}^{k}\left(n_{i} y\right) m_{i}=y$, so the m_{i} generate J. Hence, J is finitely generated. Let \mathcal{M} be a maximal ideal of R. Since we can write $J(R: J)=R$ we must have $R_{\mathcal{M}}(J(R: J))=R_{\mathcal{M}}$, so $\left(R_{\mathcal{M}} J\right)\left(R_{\mathcal{M}}(R: J)\right)=R_{\mathcal{M}}$, so $R_{\mathcal{M}} J$ is invertible
(\Leftarrow) For any ideal J, we can form $J(R: J) \subseteq R$ (not necessarily equal to R). This will be an ideal I of R. Let \mathcal{M} be a maximal ideal of R. Since J is finitely generated by assumption, we can apply the Lemma immediately above to obtain $\left(R_{\mathcal{M}}: R_{\mathcal{M}} J\right)=R_{\mathcal{M}}(R: J)$. Hence, we have $R_{\mathcal{M}} J(R: J)=R_{\mathcal{M}}$. Thus the ideal $I=J(R: J)$ is not contained in any maximal ideal of R. Thus, $I=R$ and J is invertible.
Theorem 9.4. Let R be a a local integral domain of dimension 1. Then R is a $D V R \Leftrightarrow$ the maximal ideal \mathcal{M} of R is invertible.

Proof. (\Rightarrow) If J is a fractional ideal, then $x J \subset R$ for some $x \in R$. Hence $x J=R a$ for some $a \in R$ since a DVR is PID. Thus, $J=R a x^{-1}$. Clearly $(R: J)=R a^{-1} x$ and $J(R: J)=1$, so J is invertible.
(\Leftarrow) Since every nonzero ideal $I \subset R$ is invertible, every ideal of R is finitely generated, so R is Noetherian. Now, it will suffice to show that every nonzero ideal in R is a power of the maximal ideal \mathcal{M} of R. The set of ideals I of R that are not a power of \mathcal{M} (note: we consider R to \mathcal{M}^{0}, so the unit ideal is considered to be a power of \mathcal{M}) has a maximal element if it is not empty. Taking such a maximal element I, we see that $(R: \mathcal{M}) I$ must not be invertible since if it had an inverse J, then $\mathcal{M} J$ would be an inverse for I. On the other hand, $(R: \mathcal{M}) I \neq I$ since if $(R: \mathcal{M}) I=I$, then $\mathcal{M} I=I$ which means that $I=0$ by Nakayama's Lemma. Since $(R: \mathcal{M}) I \supseteq I$ (since $1 \in(R: \mathcal{M})$), this means that $(R: \mathcal{M}) I$ is strictly larger than I, contradicting the maximality of I.

Now, we have the global counterpart.
Theorem 9.5. Let R be a integral domain of dimension 1. Then R is a Dedekind domain \Leftrightarrow every fractional ideal of R is invertible.

Proof. (\Rightarrow) Let J be a fractional ideal of R. Then, for every maximal ideal \mathcal{M}, it is clear that $R_{\mathcal{M}} J$ is a fractional ideal of $R_{\mathcal{M}}$. Since $R_{\mathcal{M}}$ is a DVR, $R_{\mathcal{M}} J$ must be therefore be invertible for every maximal ideal \mathcal{M}. Moreover, J must be finitely generated since there is an $x \in K$ for which $x J$ is an ideal of R and every ideal of R is finitely generated since R is Noetherian. Therefore, J must be invertible by a Lemma 9.3.
(\Leftarrow) Since every ideal of R is invertible, every ideal of R is finitely generated, so R is Noetherian. Now, since any maximal \mathcal{P} is invertible, we write $(R: \mathcal{P}) \mathcal{P}=R$. Localizing at \mathcal{P} and treating things as $R_{\mathcal{P}}$ modules, we then obtain

$$
R_{\mathcal{P}}(R: \mathcal{P}) R_{\mathcal{P}} \mathcal{P}=R_{\mathcal{P}},
$$

so from the theorem above $R_{\mathcal{P}}$ is a DVR and we are done.

Let's show that not only can every ideal I of a Dedekind domain R be factored uniquely, but so can every fractional ideal J of a Dedekind domain. Since every nonzero prime is invertible in R, we can write $\mathcal{P}^{-1}=(R: \mathcal{P})$ for maximal \mathcal{P} (by the way nonzero prime means the same thing as maximal in a 1-dimensional integral domain of course).

Proposition 9.6. Let R be a Dedekind domain. Then every fractional ideal J of R has a unique factorization as

$$
J=\prod_{i=1}^{n} \mathcal{P}_{i}^{e_{i}}
$$

with all the $e_{i} \neq 0$.
Proof. To see that J has some factorization as above we note $x J$ is an ideal I in R. So if we factor $R x$ and I and write $J=(x)^{-1} I$, we have a factorization. To see that the factorization is unique we write

$$
I=\left(\prod_{i=1}^{n} \mathcal{P}_{i}^{e_{i}}\right)\left(\prod_{j=1}^{m} \mathcal{Q}_{j}^{-f_{j}}\right)
$$

with all the e_{i} and f_{j} positive and no \mathcal{Q}_{j} equal to any \mathcal{P}_{i}. Let $I=$ $\prod_{j=1}^{m} \mathcal{Q}_{j}^{f_{j}}$ Then $J I^{2}$ is an ideal of R with $J I^{2}=\left(\prod_{i=1}^{n} \mathcal{P}_{i}^{e_{i}}\right)\left(\prod_{j=1}^{m} \mathcal{Q}_{j}^{f_{j}}\right)$. Since I^{2} has a unique factorization and so does $J I^{2}$, so must J have a unique factorization.

