Math 531 Tom Tucker
NOTES FROM CLASS 9/22

Note about the homework
The following is an immediate consequence of Problems 5 and 6 from
the homework you just handed in.

Theorem 9.1. Let R be a Noetherian integral domain of dimension 1.
Then the following are equivalent

(1) R is integrally closed;

(2) R is a Dedekind domain.

Proof. Since R = NpoRp by Problem 6, it follows from Problem 5 that
R is integrally closed if and only if each Rp is integrally closed. 0

A note on definitions: Fractional ideals are not generally always
assume to be finitely generated. So here’s what we have from last time
with this convention.

Lemma 9.2. Let J be a finitely generated fractional ideal of an integral
domain R with field of fractions K and let S be a multiplicative set S
in R not containing 0. Then ST'R(R: J) = (S7'R: S7'RJ).

All invertible ideals are automatically finitely generated, though.

Lemma 9.3. Let J be a fractional ideal of an integral domain R. Then
J is invertible < J is finitely generated and RaqJ is an invertible
fractional ideal of Ry for every maximal ideal M of R.

Proof. (=) Let J be an invertible ideal ideal of R. Then we can write

k
=1

with n; € (R : J). Since n;J € R for each i, we can write any y € J as
Zle(niy)mi =y, so the m; generate J. Hence, J is finitely generated.
Let M be a maximal ideal of R. Since we can write J(R : J) = R
we must have Ry(J(R : J)) = R, s0 (Rpmd)(Rpm(R = J)) = Ry, so
R J is invertible

(<) For any ideal J, we can form J(R : J) C R (not necessarily equal
to R). This will be an ideal I of R. Let M be a maximal ideal of R.
Since J is finitely generated by assumption, we can apply the Lemma
immediately above to obtain (Rx¢ : RymJ) = Ry (R @ J). Hence, we
have Ry J(R @ J) = Ry Thus the ideal I = J(R : J) is not contained
in any maximal ideal of R. Thus, I = R and J is invertible. U

Theorem 9.4. Let R be a a local integral domain of dimension 1.
Then R is a DVR < the maximal ideal M of R s invertible.
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Proof. (=) If J is a fractional ideal, then xJ C R for some =z € R.
Hence xJ = Ra for some a € R since a DVR is PID. Thus, J = Raxz ™.
Clearly (R:J) = Ra 'z and J(R: J) =1, so J is invertible.

(«<=) Since every nonzero ideal I C R is invertible, every ideal of R is
finitely generated, so R is Noetherian. Now, it will suffice to show that
every nonzero ideal in R is a power of the maximal ideal M of R. The
set of ideals I of R that are not a power of M (note: we consider R to
MO so the unit ideal is considered to be a power of M) has a maximal
element if it is not empty. Taking such a maximal element I, we see
that (R : M)I must not be invertible since if it had an inverse J, then
M.J would be an inverse for /. On the other hand, (R : M)I # I since
if (R: M)I = I, then MI = I which means that I = 0 by Nakayama’s
Lemma. Since (R : M)I 2 I (since 1 € (R : M)), this means that
(R : M)I is strictly larger than I, contradicting the maximality of
I. O

Now, we have the global counterpart.

Theorem 9.5. Let R be a integral domain of dimension 1. Then R is
a Dedekind domain < every fractional ideal of R is invertible.

Proof. (=) Let J be a fractional ideal of R. Then, for every maximal
ideal M, it is clear that RaJ is a fractional ideal of Rxs. Since Ry is
a DVR, RaJ must be therefore be invertible for every maximal ideal
M. Moreover, J must be finitely generated since there is an z € K
for which zJ is an ideal of R and every ideal of R is finitely generated
since R is Noetherian. Therefore, J must be invertible by a Lemma
9.3.

(<) Since every ideal of R is invertible, every ideal of R is finitely
generated, so R is Noetherian. Now, since any maximal P is invertible,
we write (R : P)P = R. Localizing at P and treating things as Rp
modules, we then obtain

RP(R : P)RPP = RP,

so from the theorem above Rp is a DVR and we are done.
O

Let’s show that not only can every ideal I of a Dedekind domain R
be factored uniquely, but so can every fractional ideal J of a Dedekind
domain. Since every nonzero prime is invertible in R, we can write
P~! = (R : P) for maximal P (by the way nonzero prime means the
same thing as maximal in a 1-dimensional integral domain of course).
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Proposition 9.6. Let R be a Dedekind domain. Then every fractional
ideal J of R has a unique factorization as

J=1]7
i=1
with all the e; # 0.

Proof. To see that J has some factorization as above we note x.J is an
ideal I in R. So if we factor Rz and I and write J = (x)~'I, we have
a factorization. To see that the factorization is unique we write

r=(I7dIe™

i=1
with all the e; and f; positive and no Q; equal to any P;. Let I =
[17, Q¥ Then JI? is an ideal of R with JI* = ([T7, PF)([T}-, Q7).
Since I? has a unique factorization and so does JI?, so must J have a
unique factorization. U



