Math 531 Tom Tucker NOTES FROM CLASS 9/22

Note about the homework

The following is an immediate consequence of Problems 5 and 6 from the homework you just handed in.

Theorem 9.1. Let R be a Noetherian integral domain of dimension 1. Then the following are equivalent

- (1) R is integrally closed;
- (2) R is a Dedekind domain.

Proof. Since $R = \bigcap_{\mathcal{P}\neq 0} R_{\mathcal{P}}$ by Problem 6, it follows from Problem 5 that R is integrally closed if and only if each $R_{\mathcal{P}}$ is integrally closed. \Box

A note on definitions: Fractional ideals are not generally always assume to be finitely generated. So here's what we have from last time with this convention.

Lemma 9.2. Let J be a finitely generated fractional ideal of an integral domain R with field of fractions K and let S be a multiplicative set S in R not containing 0. Then $S^{-1}R(R:J) = (S^{-1}R:S^{-1}RJ)$.

All invertible ideals are automatically finitely generated, though.

Lemma 9.3. Let J be a fractional ideal of an integral domain R. Then J is invertible \Leftrightarrow J is finitely generated and $R_{\mathcal{M}}J$ is an invertible fractional ideal of $R_{\mathcal{M}}$ for every maximal ideal \mathcal{M} of R.

Proof. (\Rightarrow) Let J be an invertible ideal ideal of R. Then we can write

$$\sum_{i=1}^{k} n_i m_i = 1$$

with $n_i \in (R:J)$. Since $n_i J \in R$ for each *i*, we can write any $y \in J$ as $\sum_{i=1}^k (n_i y) m_i = y$, so the m_i generate *J*. Hence, *J* is finitely generated. Let \mathcal{M} be a maximal ideal of *R*. Since we can write J(R:J) = Rwe must have $R_{\mathcal{M}}(J(R:J)) = R_{\mathcal{M}}$, so $(R_{\mathcal{M}}J)(R_{\mathcal{M}}(R:J)) = R_{\mathcal{M}}$, so $R_{\mathcal{M}}J$ is invertible

 (\Leftarrow) For any ideal J, we can form $J(R:J) \subseteq R$ (not necessarily equal to R). This will be an ideal I of R. Let \mathcal{M} be a maximal ideal of R. Since J is finitely generated by assumption, we can apply the Lemma immediately above to obtain $(R_{\mathcal{M}}: R_{\mathcal{M}}J) = R_{\mathcal{M}}(R:J)$. Hence, we have $R_{\mathcal{M}}J(R:J) = R_{\mathcal{M}}$. Thus the ideal I = J(R:J) is not contained in any maximal ideal of R. Thus, I = R and J is invertible. \Box

Theorem 9.4. Let R be a a local integral domain of dimension 1. Then R is a $DVR \Leftrightarrow$ the maximal ideal \mathcal{M} of R is invertible. *Proof.* (\Rightarrow) If J is a fractional ideal, then $xJ \subset R$ for some $x \in R$. Hence xJ = Ra for some $a \in R$ since a DVR is PID. Thus, $J = Rax^{-1}$. Clearly $(R:J) = Ra^{-1}x$ and J(R:J) = 1, so J is invertible.

 (\Leftarrow) Since every nonzero ideal $I \subset R$ is invertible, every ideal of R is finitely generated, so R is Noetherian. Now, it will suffice to show that every nonzero ideal in R is a power of the maximal ideal \mathcal{M} of R. The set of ideals I of R that are not a power of \mathcal{M} (note: we consider R to \mathcal{M}^0 , so the unit ideal is considered to be a power of \mathcal{M}) has a maximal element if it is not empty. Taking such a maximal element I, we see that $(R : \mathcal{M})I$ must not be invertible since if it had an inverse J, then $\mathcal{M}J$ would be an inverse for I. On the other hand, $(R : \mathcal{M})I \neq I$ since if $(R : \mathcal{M})I = I$, then $\mathcal{M}I = I$ which means that I = 0 by Nakayama's Lemma. Since $(R : \mathcal{M})I \supseteq I$ (since $1 \in (R : \mathcal{M})$), this means that $(R : \mathcal{M})I$ is strictly larger than I, contradicting the maximality of I.

Now, we have the global counterpart.

Theorem 9.5. Let R be a integral domain of dimension 1. Then R is a Dedekind domain \Leftrightarrow every fractional ideal of R is invertible.

Proof. (\Rightarrow) Let J be a fractional ideal of R. Then, for every maximal ideal \mathcal{M} , it is clear that $R_{\mathcal{M}}J$ is a fractional ideal of $R_{\mathcal{M}}$. Since $R_{\mathcal{M}}$ is a DVR, $R_{\mathcal{M}}J$ must be therefore be invertible for every maximal ideal \mathcal{M} . Moreover, J must be finitely generated since there is an $x \in K$ for which xJ is an ideal of R and every ideal of R is finitely generated since R is Noetherian. Therefore, J must be invertible by a Lemma 9.3.

 (\Leftarrow) Since every ideal of R is invertible, every ideal of R is finitely generated, so R is Noetherian. Now, since any maximal \mathcal{P} is invertible, we write $(R : \mathcal{P})\mathcal{P} = R$. Localizing at \mathcal{P} and treating things as $R_{\mathcal{P}}$ modules, we then obtain

$$R_{\mathcal{P}}(R:\mathcal{P})R_{\mathcal{P}}\mathcal{P}=R_{\mathcal{P}},$$

so from the theorem above $R_{\mathcal{P}}$ is a DVR and we are done.

Let's show that not only can every ideal I of a Dedekind domain R be factored uniquely, but so can every fractional ideal J of a Dedekind domain. Since every nonzero prime is invertible in R, we can write $\mathcal{P}^{-1} = (R : \mathcal{P})$ for maximal \mathcal{P} (by the way nonzero prime means the same thing as maximal in a 1-dimensional integral domain of course).

Proposition 9.6. Let R be a Dedekind domain. Then every fractional ideal J of R has a unique factorization as

$$J = \prod_{i=1}^{n} \mathcal{P}_{i}^{e_{i}}$$

with all the $e_i \neq 0$.

Proof. To see that J has some factorization as above we note xJ is an ideal I in R. So if we factor Rx and I and write $J = (x)^{-1}I$, we have a factorization. To see that the factorization is unique we write

$$I = (\prod_{i=1}^{n} \mathcal{P}_{i}^{e_{i}})(\prod_{j=1}^{m} \mathcal{Q}_{j}^{-f_{j}})$$

with all the e_i and f_j positive and no \mathcal{Q}_j equal to any \mathcal{P}_i . Let $I = \prod_{j=1}^m \mathcal{Q}_j^{f_j}$ Then JI^2 is an ideal of R with $JI^2 = (\prod_{i=1}^n \mathcal{P}_i^{e_i})(\prod_{j=1}^m \mathcal{Q}_j^{f_j})$. Since I^2 has a unique factorization and so does JI^2 , so must J have a unique factorization.