
Math 531 Tom Tucker
NOTES FROM CLASS 9/22

Note about the homework
The following is an immediate consequence of Problems 5 and 6 from

the homework you just handed in.

Theorem 9.1. Let R be a Noetherian integral domain of dimension 1.
Then the following are equivalent

(1) R is integrally closed;
(2) R is a Dedekind domain.

Proof. Since R = ∩P6=0RP by Problem 6, it follows from Problem 5 that
R is integrally closed if and only if each RP is integrally closed. �

A note on definitions: Fractional ideals are not generally always
assume to be finitely generated. So here’s what we have from last time
with this convention.

Lemma 9.2. Let J be a finitely generated fractional ideal of an integral
domain R with field of fractions K and let S be a multiplicative set S
in R not containing 0. Then S−1R(R : J) = (S−1R : S−1RJ).

All invertible ideals are automatically finitely generated, though.

Lemma 9.3. Let J be a fractional ideal of an integral domain R. Then
J is invertible ⇔ J is finitely generated and RMJ is an invertible
fractional ideal of RM for every maximal ideal M of R.

Proof. (⇒) Let J be an invertible ideal ideal of R. Then we can write

k∑
i=1

nimi = 1

with ni ∈ (R : J). Since niJ ∈ R for each i, we can write any y ∈ J as∑k
i=1(niy)mi = y, so the mi generate J . Hence, J is finitely generated.

Let M be a maximal ideal of R. Since we can write J(R : J) = R
we must have RM(J(R : J)) = RM, so (RMJ)(RM(R : J)) = RM, so
RMJ is invertible

(⇐) For any ideal J , we can form J(R : J) ⊆ R (not necessarily equal
to R). This will be an ideal I of R. Let M be a maximal ideal of R.
Since J is finitely generated by assumption, we can apply the Lemma
immediately above to obtain (RM : RMJ) = RM(R : J). Hence, we
have RMJ(R : J) = RM. Thus the ideal I = J(R : J) is not contained
in any maximal ideal of R. Thus, I = R and J is invertible. �

Theorem 9.4. Let R be a a local integral domain of dimension 1.
Then R is a DVR ⇔ the maximal ideal M of R is invertible.
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Proof. (⇒) If J is a fractional ideal, then xJ ⊂ R for some x ∈ R.
Hence xJ = Ra for some a ∈ R since a DVR is PID. Thus, J = Rax−1.
Clearly (R : J) = Ra−1x and J(R : J) = 1, so J is invertible.

(⇐) Since every nonzero ideal I ⊂ R is invertible, every ideal of R is
finitely generated, so R is Noetherian. Now, it will suffice to show that
every nonzero ideal in R is a power of the maximal ideal M of R. The
set of ideals I of R that are not a power of M (note: we consider R to
M0, so the unit ideal is considered to be a power ofM) has a maximal
element if it is not empty. Taking such a maximal element I, we see
that (R :M)I must not be invertible since if it had an inverse J , then
MJ would be an inverse for I. On the other hand, (R :M)I 6= I since
if (R :M)I = I, thenMI = I which means that I = 0 by Nakayama’s
Lemma. Since (R : M)I ⊇ I (since 1 ∈ (R : M)), this means that
(R : M)I is strictly larger than I, contradicting the maximality of
I. �

Now, we have the global counterpart.

Theorem 9.5. Let R be a integral domain of dimension 1. Then R is
a Dedekind domain ⇔ every fractional ideal of R is invertible.

Proof. (⇒) Let J be a fractional ideal of R. Then, for every maximal
ideal M, it is clear that RMJ is a fractional ideal of RM. Since RM is
a DVR, RMJ must be therefore be invertible for every maximal ideal
M. Moreover, J must be finitely generated since there is an x ∈ K
for which xJ is an ideal of R and every ideal of R is finitely generated
since R is Noetherian. Therefore, J must be invertible by a Lemma
9.3.

(⇐) Since every ideal of R is invertible, every ideal of R is finitely
generated, so R is Noetherian. Now, since any maximal P is invertible,
we write (R : P)P = R. Localizing at P and treating things as RP
modules, we then obtain

RP(R : P)RPP = RP ,

so from the theorem above RP is a DVR and we are done.
�

Let’s show that not only can every ideal I of a Dedekind domain R
be factored uniquely, but so can every fractional ideal J of a Dedekind
domain. Since every nonzero prime is invertible in R, we can write
P−1 = (R : P) for maximal P (by the way nonzero prime means the
same thing as maximal in a 1-dimensional integral domain of course).
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Proposition 9.6. Let R be a Dedekind domain. Then every fractional
ideal J of R has a unique factorization as

J =
n∏

i=1

Pei
i

with all the ei 6= 0.

Proof. To see that J has some factorization as above we note xJ is an
ideal I in R. So if we factor Rx and I and write J = (x)−1I, we have
a factorization. To see that the factorization is unique we write

I = (
n∏

i=1

Pei
i )(

m∏
j=1

Q−fj

j )

with all the ei and fj positive and no Qj equal to any Pi. Let I =∏m
j=1Q

fj

j Then JI2 is an ideal of R with JI2 = (
∏n

i=1P
ei
i )(

∏m
j=1Q

fj

j ).

Since I2 has a unique factorization and so does JI2, so must J have a
unique factorization. �


