Math 531 Tom Tucker
NOTES FROM CLASS 9/20

Lemma 8.1. Let R be a integral domain, let M be a maximal ideal of
R, let n > q. Then

R/M™ = Ry /(RmM™)

Proof. Since 1 € R\ M, we can embed R into Ry, by sending r € R
to r/1. We have a map then from R to Rpi/RpmM™ by composing
this embedding with the quotient map. We show that this is well-
defined on congruence classes of R modulo M" since if a — b € M,
then a/1 —b/1 € Ry M"™. Thus, we obtain a map

¥ RIM™ — R/ (RuM™).

This map is easily seen to be surjective by the Lemma above, since
for any a/s € Ry, there is a t € R such that ts = 1 (mod M"),
which means that ta = a/s (mod Ry M™). To see that the map is
injective we note that Ry M" is the set of all m/s where m € M"
and s € R\ M. So, if for some t € R, we have t/1 € Ry M", then
we must have t/1 = m/s for m € M"™ and sR \ M, which means that
ts —m € RyM™. Since s is unit in R, we have Ryt = Rym, so
t € Ry M™, as desired. d

Note in the following proof we do not simply mod out by I and factor
0. We mod out by an ideal smaller than I so that the projection of
I onto each factor is not zero. That way we can apply Nakayama'’s
lemma.

Theorem 8.2. Let R be a Dedekind domain, let I C R be a nonzero
ideal, and let Py, ..., P, be the set of primes that contain I. Then there
erists a unique n-tuple ey, ..., e, of non-negative integers such that

ﬁij =1
j=1

Proof. There are positive integers f; such that

m

HPfj_l cI

j=1
since R is Noetherian. Let’s set up a bit of notation first. For each
J=1,...,n we have the quotient map ¢; : R — R/ijj. Let ¢ be the
map from R to @)_, R/P]fj given by

¢(r) = (¢1(r), . dn(r))-



2

We'll denote R/ ijj as R;. Since ¢([) is an ideal, it has decomposition
as above ¢(I) = @)_, ¢;(I). Each ¢;(I) is an ideal in R/ijj. We
know that R/ P]fj is isomorphic to Rp,/ ijj , s0 ¢;(I) must be a power
of ¢;(P;); here we use the fact that Rp, is a DVR. So we can write

o;(I) = P;j for some unique e; < f; (since I was actually contained in
the product of the P; to the f; — 1 power). Since

¢(P;)) = EP R, P ¢;(P))
L£j

(this follows from the Chinese Remainder theorem, in fact), we see then
that

HCb(P;j) = @¢j(Pj) = EB%’(I) = o(I).

Since all the e; < f;, we have

ker ¢ = ﬁpjj C ﬁﬂfﬂ}
j=1 j=1
SO
I=¢"'o) =0 ([[e(P) =7
j=1

as desired. To see that the e; are unique, recall that ¢;(I) = ¢;(P;)%
for a unique e;, so for e; < e;, we have

;(P;) & ¢;(I)
and for €} > e;, we have
o;(I) & &;(P;)"

(by Nakayama’s Lemma), either of which forces the product

n

[T¢(Py) # 6(1).

J=1

Now, for what are called fractional ideals

Definition 8.3. Let R be an integral domain with field of fractions
K. A fractional ideal of R is an R-submodule J C K for which there
is some nonzero x € R such that zJ C R.



Definition 8.4. For a fractional ideal J, we define (R : J) to be set
{r e K | zJ C R}.
We say that J is invertible if J(R: J) = R.

A few remarks on the definition above. It is clear that (R: R) = R
since R contains 1 and is closed under multiplication. It follows that
when JN = R, we must have N = (R : J). Also note that J(R : J)
may not be all of R, as we’ll see in some examples later.

If we consider the unit ideal R to be the identity, then we see that the
invertible ideals of R form a group under fractional ideal multiplication,
since it clear that if J and N are invertible, so is JN and that if J is
invertible, then so is its inverse (R : J) invertible, by definition.

We say, as usual, that a fractional ideal J is principal if there exists
some y such that Ry = J. The principal fractional ideals of J are
clearly invertible and form a subgroup of the group of invertible ideals.

We make the following definitions

F(R) is the set of invertible fractional ideals of R

P(R) is the set of principal fractional ideals of R

and
Pic(R) = F(R)/P(R).
Pic(R) is called the Picard group of R.
We will show that if R is a DVR, then all of the fractional ideals of
R are invertible. We’ll also want a few facts about invertible ideals.

Lemma 8.5. Let J be a finitely generated fractional ideal of an integral
domain R with field of fractions K and let S be a multiplicative set S
in R not containing 0. Then ST'R(R:J) = (S"'R: S™'RJ).

Proof. Since xJ C R implies that 7J C S7IR for any s € S it is
clear that ST'R(R : J) C (S7'R : ST'RJ). To get the reverse in-
clusion, let y € (SR : ST'RJ) and let my, ..., m, generate J as an
R-module. Since yS™'RJ C S™'R, we must have ym; C S™'R, so we
can write ym; = r;/s; where r; € R and s; € S. Since (s1 - $,y)m; =
(IT; sj)r: € R, this means that s;---s,y € (R : J). Thus, y €
STI'R(R: J). O



