Math 531

Now, a breif interlude on geometry and normality. Let F'(X,Y) =0
be a curve in the plane k? over an algebraically closed field k. We say
that F'(X,Y) is singular at the point (a,b) is

oF OF

a—X(a, b) == a—y(a,b) =0.
In other words if the tangent vector to F' = 0 is 0 at (a,b), so that
there is no notion of a tangent vector here. If the point (a,b) is not
singular, we say that it is nonsingular.

Note that the primes Q of R correspond to points (a,b) such that
F(a,b) = 0. If Q corresponds to the point (a,b) then Q is simply the
image of k[ X, Y|(X —a) + k[X,Y](Y —b) in R.

Lemma 6.1. Let Q be a nonzero prime in the ring
R = k[X,Y]/F(X,Y).
Then
dim; Q/Q* =1
if and only if the point (a,b) corresponding to Q is nonsingular.
Proof. Let P be prime in k[X,Y] generated by (X —a) and (Y —b).
Let 6 be the map from k[X, Y] to k? given by
G oG
0(G) = (==(a,b), =(a,b)).
(@)= (2 0.0), 2 a1

Then (X —a) = (1,0) and (Y —b) = (0, 1), so the rank of the image
of P is 2. It is easy to see that P? is in the kernel of this map. So 6
induces an isomorphism between P/P? and k?. Now we have
Q/Q* = (P/(P* + F(X.Y)),
as a k-vector space since
PP+ F(X,)Y)=¢"(Q)

where ¢ is the quotient map from k[X, Y] to R. Counting dimensions
we have

dim, P/P? = 2
if 6(F) = 0 and and

dim, P/P* =1

otherwise. O

Lemma 6.2. (Later in class) We have

Q/Q* = RoQ/(RgQ)*.
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Lemma 6.3. Let R be a ring that has direct sum decomposition
R=ER;
j=1
Then every ideal in I C R can be written as

I = élj
j=1

for ideals I; C R;. If P is a prime of R then there is some j for which

we can write
P=Pr PP

0]
Proof. We can view R = @?:1 R; as the set of

(1, ..y Tn)

with 7; € R;. Let p; be the usual projection from R onto its j-th
coordinate and let 7; be the usual embedding of R; into R obtained by
sending r; € R; to the element of R with all coordinates 0 except for
the j-th coordinate which is set to r;. Since an ideal I of R must be a
i;(R;) module, the set of p;(r) for which r € I must form an ideal R;
ideal, call it I;. It is easy to see that [; = p,(I). Certainly, I C @ p;(1).
Since we can multiply anything in I by (0,...,1,,0,...,0) we see that
i;p;(I) C 1. Hence @ p;(I) C I, and we are done with our description
of ideals of @?:1 R;. For prime ideals, we note that if P is a prime
then (ai1,...,a,)(b1,...,b,) € P implies that a;b; € p;(P) for each j,
so p;(P) must be a prime of R; or all of R;. Suppose we had k # j with
p;(P) # R; and pg(P) # Ry. Then choosing a; € p;(P), ar, € pr(P)
and b; & p;(P), b, ¢ pi(P), we see that

(4(ay) + i5(bx))(5(by) + tx(ar)) € P,
but (;(a;)+1;(bg)), (¢;(b;)+ix(ar)) ¢ P, a contradiction, so p;(P) = R;

for all but one j. Thus
P-HrDr
04
for some prime P; of R;. O
Corollary 6.4. Let R be a Noetherian ring in which every prime ideal

1s mazximal. Then R has only finitely many prime ideals Py, ..., P,
and can be written as

R é R/PY
j=1
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Proof. Since R is Noetherian, there are prime ideals P; such that [[ P;”
j=1

0 (remember that we can make the product be contained in 0 and 0 is

the only element in R0). Then the natural map

R — éR/PZ-wi
=1

is surjective with kernel 0, hence it is an isomoprhism. Within each
factor R/P;", the only prime ideal is the image of P; under the quotient
map ¢, since the image of any other prime under ¢ is all of R/P;” by
the Lemma above. Hence, ¢(P;) is the only prime in R/P;". By the
Lemma above, the only primes in R are of the form B,,; R ¢(P:).

O

Corollary 6.5. Let R be a Noetherian ring of dimension 1. Then
every nonzero ideal I is contained in finitely many prime ideals P.

Proof. Every prime ideal in R/ is maximal, so the proposition above
applies. O

Lemma 6.6. Let R be a integral domain, let M be a mazimal ideal
of R, let n > q, and let ¢ the quotient map ¢ : R — R/M" be the
quotient map. Then ¢(s) is a unit in R/M™ for every s € R\ M.

Proof. Since M is maximal, we can have Rs+M = 1 for s ¢ M. Thus,
we can write ar +m = 1 for a € R and m € M" using facts about

coprime ideals proved earlier. Thus ax = 1 (mod M"), so ¢(ax) =
1. U



