Math 531

Now, a breif interlude on geometry and normality. Let F(X, Y) = 0be a curve in the plane k^2 over an algebraically closed field k. We say that F(X, Y) is *singular* at the point (a, b) is

$$\frac{\partial F}{\partial X}(a,b) = \frac{\partial F}{\partial Y}(a,b) = 0.$$

In other words if the tangent vector to F = 0 is 0 at (a, b), so that there is no notion of a tangent vector here. If the point (a, b) is not singular, we say that it is nonsingular.

Note that the primes \mathcal{Q} of R correspond to points (a, b) such that F(a, b) = 0. If \mathcal{Q} corresponds to the point (a, b) then \mathcal{Q} is simply the image of k[X, Y](X - a) + k[X, Y](Y - b) in R.

Lemma 6.1. Let Q be a nonzero prime in the ring

$$R = k[X, Y]/F(X, Y).$$

Then

$$\dim_k \mathcal{Q}/\mathcal{Q}^2 = 1$$

if and only if the point (a, b) corresponding to Q is nonsingular.

Proof. Let \mathcal{P} be prime in k[X, Y] generated by (X - a) and (Y - b). Let θ be the map from k[X, Y] to k^2 given by

$$\theta(G) = \left(\frac{\partial G}{\partial X}(a,b), \frac{\partial G}{\partial Y}(a,b)\right).$$

Then $\theta(X - a) = (1, 0)$ and $\theta(Y - b) = (0, 1)$, so the rank of the image of \mathcal{P} is 2. It is easy to see that \mathcal{P}^2 is in the kernel of this map. So θ induces an isomorphism between $\mathcal{P}/\mathcal{P}^2$ and k^2 . Now we have

$$\mathcal{Q}/\mathcal{Q}^2 \cong (\mathcal{P}/(\mathcal{P}^2 + F(X, Y))),$$

as a k-vector space since

$$\mathcal{P}^2 + F(X,Y) = \phi^{-1}(\mathcal{Q}^2)$$

where ϕ is the quotient map from k[X, Y] to R. Counting dimensions we have

$$\dim_k \mathcal{P}/\mathcal{P}^2 = 2$$

if $\theta(F) = 0$ and and

$$\dim_k \mathcal{P}/\mathcal{P}^2 = 1$$

otherwise.

Lemma 6.2. (Later in class) We have

$$\mathcal{Q}/\mathcal{Q}^2 \cong R_{\mathcal{Q}}\mathcal{Q}/(R_{\mathcal{Q}}\mathcal{Q})^2.$$

Lemma 6.3. Let R be a ring that has direct sum decomposition

$$R = \bigoplus_{j=1}^{n} R_j.$$

Then every ideal in $I \subset R$ can be written as

$$I = \bigoplus_{j=1}^{n} I_j$$

for ideals $I_j \subset R_j$. If \mathcal{P} is a prime of R then there is some j for which we can write

$$\mathcal{P} = \bigoplus_{\ell \neq j} R_\ell \bigoplus \mathcal{P}_j$$

Proof. We can view $R = \bigoplus_{j=1}^{n} R_j$ as the set of

 (r_1,\ldots,r_n)

with $r_j \in R_j$. Let p_j be the usual projection from R onto its j-th coordinate and let i_j be the usual embedding of R_j into R obtained by sending $r_j \in R_j$ to the element of R with all coordinates 0 except for the j-th coordinate which is set to r_j . Since an ideal I of R must be a $i_j(R_j)$ module, the set of $p_j(r)$ for which $r \in I$ must form an ideal R_j ideal, call it I_j . It is easy to see that $I_j = p_j(I)$. Certainly, $I \subset \bigoplus p_j(I)$. Since we can multiply anything in I by $(0, \ldots, 1_j, 0, \ldots, 0)$ we see that $i_j p_j(I) \subset I$. Hence $\bigoplus p_j(I) \subset I$, and we are done with our description of ideals of $\bigoplus_{j=1}^n R_j$. For prime ideals, we note that if \mathcal{P} is a prime then $(a_1, \ldots, a_n)(b_1, \ldots, b_n) \in \mathcal{P}$ implies that $a_j b_j \in p_j(\mathcal{P})$ for each j, so $p_j(\mathcal{P})$ must be a prime of R_j or all of R_j . Suppose we had $k \neq j$ with $p_j(\mathcal{P}) \neq R_j$ and $p_k(\mathcal{P}) \neq R_k$. Then choosing $a_j \in p_j(\mathcal{P})$, $a_k \in p_k(\mathcal{P})$ and $b_j \notin p_j(\mathcal{P})$, $b_k \notin p_k(\mathcal{P})$, we see that

$$(i_j(a_j) + i_j(b_k))(i_j(b_j) + i_k(a_k)) \in \mathcal{P},$$

but $(i_j(a_j)+i_j(b_k)), (i_j(b_j)+i_k(a_k)) \notin \mathcal{P}$, a contradiction, so $p_j(\mathcal{P}) = R_j$ for all but one j. Thus

$$\mathcal{P} = \bigoplus_{\ell \neq j} R_\ell \bigoplus \mathcal{P}_j$$

for some prime \mathcal{P}_j of R_j .

Corollary 6.4. Let R be a Noetherian ring in which every prime ideal is maximal. Then R has only finitely many prime ideals $\mathcal{P}_1, \ldots, \mathcal{P}_n$ and can be written as

$$R \cong \bigoplus_{j=1}^{n} R/\mathcal{P}_i^{w_i}.$$

Proof. Since R is Noetherian, there are prime ideals \mathcal{P}_i such that $\prod_{j=1}^n \mathcal{P}_i^{w_i} =$

0 (remember that we can make the product be contained in 0 and 0 is the only element in R0). Then the natural map

$$R \longrightarrow \bigoplus_{j=1}^{n} R / \mathcal{P}_{i}^{w_{i}}$$

is surjective with kernel 0, hence it is an isomoprhism. Within each factor $R/\mathcal{P}_i^{w_i}$, the only prime ideal is the image of \mathcal{P}_i under the quotient map ϕ , since the image of any other prime under ϕ is all of $R/\mathcal{P}_i^{w_i}$ by the Lemma above. Hence, $\phi(\mathcal{P}_i)$ is the only prime in $R/\mathcal{P}_i^{w_i}$. By the Lemma above, the only primes in R are of the form $\bigoplus_{\ell \neq j} R \bigoplus \phi(\mathcal{P}_i)$.

Corollary 6.5. Let R be a Noetherian ring of dimension 1. Then every nonzero ideal I is contained in finitely many prime ideals \mathcal{P} .

Proof. Every prime ideal in R/I is maximal, so the proposition above applies.

Lemma 6.6. Let R be a integral domain, let \mathcal{M} be a maximal ideal of R, let $n \geq q$, and let ϕ the quotient map $\phi : R \longrightarrow R/\mathcal{M}^n$ be the quotient map. Then $\phi(s)$ is a unit in R/\mathcal{M}^n for every $s \in R \setminus \mathcal{M}$.

Proof. Since \mathcal{M} is maximal, we can have $Rs + \mathcal{M} = 1$ for $s \notin \mathcal{M}$. Thus, we can write ax + m = 1 for $a \in R$ and $m \in \mathcal{M}^n$ using facts about coprime ideals proved earlier. Thus $ax = 1 \pmod{\mathcal{M}^n}$, so $\phi(ax) = 1$.