Math 531

Now, a breif interlude on geometry and normality. Let $F(X, Y)=0$ be a curve in the plane k^{2} over an algebraically closed field k. We say that $F(X, Y)$ is singular at the point (a, b) is

$$
\frac{\partial F}{\partial X}(a, b)=\frac{\partial F}{\partial Y}(a, b)=0 .
$$

In other words if the tangent vector to $F=0$ is 0 at (a, b), so that there is no notion of a tangent vector here. If the point (a, b) is not singular, we say that it is nonsingular.

Note that the primes \mathcal{Q} of R correspond to points (a, b) such that $F(a, b)=0$. If \mathcal{Q} corresponds to the point (a, b) then \mathcal{Q} is simply the image of $k[X, Y](X-a)+k[X, Y](Y-b)$ in R.

Lemma 6.1. Let \mathcal{Q} be a nonzero prime in the ring

$$
R=k[X, Y] / F(X, Y) .
$$

Then

$$
\operatorname{dim}_{k} \mathcal{Q} / \mathcal{Q}^{2}=1
$$

if and only if the point (a, b) corresponding to \mathcal{Q} is nonsingular.
Proof. Let \mathcal{P} be prime in $k[X, Y]$ generated by $(X-a)$ and $(Y-b)$. Let θ be the map from $k[X, Y]$ to k^{2} given by

$$
\theta(G)=\left(\frac{\partial G}{\partial X}(a, b), \frac{\partial G}{\partial Y}(a, b)\right) .
$$

Then $\theta(X-a)=(1,0)$ and $\theta(Y-b)=(0,1)$, so the rank of the image of \mathcal{P} is 2 . It is easy to see that \mathcal{P}^{2} is in the kernel of this map. So θ induces an isomorphism between $\mathcal{P} / \mathcal{P}^{2}$ and k^{2}. Now we have

$$
\mathcal{Q} / \mathcal{Q}^{2} \cong\left(\mathcal{P} /\left(\mathcal{P}^{2}+F(X, Y)\right),\right.
$$

as a k-vector space since

$$
\mathcal{P}^{2}+F(X, Y)=\phi^{-1}\left(\mathcal{Q}^{2}\right)
$$

where ϕ is the quotient map from $k[X, Y]$ to R. Counting dimensions we have

$$
\operatorname{dim}_{k} \mathcal{P} / \mathcal{P}^{2}=2
$$

if $\theta(F)=0$ and and

$$
\operatorname{dim}_{k} \mathcal{P} / \mathcal{P}^{2}=1
$$

otherwise.
Lemma 6.2. (Later in class) We have

$$
\mathcal{Q} / \mathcal{Q}^{2} \cong R_{\mathcal{Q}} \mathcal{Q} /\left(R_{\mathcal{Q}} \mathcal{Q}\right)^{2}
$$

Lemma 6.3. Let R be a ring that has direct sum decomposition

$$
R=\bigoplus_{j=1}^{n} R_{j} .
$$

Then every ideal in $I \subset R$ can be written as

$$
I=\bigoplus_{j=1}^{n} I_{j}
$$

for ideals $I_{j} \subset R_{j}$. If \mathcal{P} is a prime of R then there is some j for which we can write

$$
\mathcal{P}=\bigoplus_{\ell \neq j} R_{\ell} \bigoplus \mathcal{P}_{j}
$$

Proof. We can view $R=\bigoplus_{j=1}^{n} R_{j}$ as the set of

$$
\left(r_{1}, \ldots, r_{n}\right)
$$

with $r_{j} \in R_{j}$. Let p_{j} be the usual projection from R onto its j-th coordinate and let i_{j} be the usual embedding of R_{j} into R obtained by sending $r_{j} \in R_{j}$ to the element of R with all coordinates 0 except for the j-th coordinate which is set to r_{j}. Since an ideal I of R must be a $i_{j}\left(R_{j}\right)$ module, the set of $p_{j}(r)$ for which $r \in I$ must form an ideal R_{j} ideal, call it I_{j}. It is easy to see that $I_{j}=p_{j}(I)$. Certainly, $I \subset \bigoplus p_{j}(I)$. Since we can multiply anything in I by $\left(0, \ldots, 1_{j}, 0, \ldots, 0\right)$ we see that $i_{j} p_{j}(I) \subset I$. Hence $\bigoplus p_{j}(I) \subset I$, and we are done with our description of ideals of $\bigoplus_{j=1}^{n} R_{j}$. For prime ideals, we note that if \mathcal{P} is a prime then $\left(a_{1}, \ldots, a_{n}\right)\left(b_{1}, \ldots, b_{n}\right) \in \mathcal{P}$ implies that $a_{j} b_{j} \in p_{j}(\mathcal{P})$ for each j, so $p_{j}(\mathcal{P})$ must be a prime of R_{j} or all of R_{j}. Suppose we had $k \neq j$ with $p_{j}(\mathcal{P}) \neq R_{j}$ and $p_{k}(\mathcal{P}) \neq R_{k}$. Then choosing $a_{j} \in p_{j}(\mathcal{P}), a_{k} \in p_{k}(\mathcal{P})$ and $b_{j} \notin p_{j}(\mathcal{P}), b_{k} \notin p_{k}(\mathcal{P})$, we see that

$$
\left(i_{j}\left(a_{j}\right)+i_{j}\left(b_{k}\right)\right)\left(i_{j}\left(b_{j}\right)+i_{k}\left(a_{k}\right)\right) \in \mathcal{P},
$$

but $\left(i_{j}\left(a_{j}\right)+i_{j}\left(b_{k}\right)\right),\left(i_{j}\left(b_{j}\right)+i_{k}\left(a_{k}\right)\right) \notin \mathcal{P}$, a contradiction, so $p_{j}(\mathcal{P})=R_{j}$ for all but one j. Thus

$$
\mathcal{P}=\bigoplus_{\ell \neq j} R_{\ell} \bigoplus \mathcal{P}_{j}
$$

for some prime \mathcal{P}_{j} of R_{j}.
Corollary 6.4. Let R be a Noetherian ring in which every prime ideal is maximal. Then R has only finitely many prime ideals $\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}$ and can be written as

$$
R \cong \bigoplus_{j=1}^{n} R / \mathcal{P}_{i}^{w_{i}} .
$$

Proof. Since R is Noetherian, there are prime ideals \mathcal{P}_{i} such that $\prod_{j=1}^{n} \mathcal{P}_{i}^{w_{i}}=$ 0 (remember that we can make the product be contained in 0 and 0 is the only element in $R 0$). Then the natural map

$$
R \longrightarrow \bigoplus_{j=1}^{n} R / \mathcal{P}_{i}^{w_{i}}
$$

is surjective with kernel 0 , hence it is an isomoprhism. Within each factor $R / \mathcal{P}_{i}^{w_{i}}$, the only prime ideal is the image of \mathcal{P}_{i} under the quotient map ϕ, since the image of any other prime under ϕ is all of $R / \mathcal{P}_{i}^{w_{i}}$ by the Lemma above. Hence, $\phi\left(\mathcal{P}_{i}\right)$ is the only prime in $R / \mathcal{P}_{i}^{w_{i}}$. By the Lemma above, the only primes in R are of the form $\bigoplus_{\ell \neq j} R \bigoplus \phi\left(\mathcal{P}_{i}\right)$.

Corollary 6.5. Let R be a Noetherian ring of dimension 1. Then every nonzero ideal I is contained in finitely many prime ideals \mathcal{P}.

Proof. Every prime ideal in R / I is maximal, so the proposition above applies.
Lemma 6.6. Let R be a integral domain, let \mathcal{M} be a maximal ideal of R, let $n \geq q$, and let ϕ the quotient map $\phi: R \longrightarrow R / \mathcal{M}^{n}$ be the quotient map. Then $\phi(s)$ is a unit in R / \mathcal{M}^{n} for every $s \in R \backslash \mathcal{M}$.

Proof. Since \mathcal{M} is maximal, we can have $R s+\mathcal{M}=1$ for $s \notin \mathcal{M}$. Thus, we can write $a x+m=1$ for $a \in R$ and $m \in \mathcal{M}^{n}$ using facts about coprime ideals proved earlier. Thus $a x=1\left(\bmod \mathcal{M}^{n}\right)$, so $\phi(a x)=$ 1.

