
Math 531 Tom Tucker

Let’s finish off the Proposition from last time.

Proposition 7.1. Let R be a Noetherian local domain of dimension 1
with maximal ideal M and with R/M = k its residue field. Then the
following are equivalent

(1) R is a DVR;
(2) R is integrally closed;
(3) M is principal;
(4) there is some π ∈ R such that every element a ∈ R can be written

uniquely as uπn for some unit u and some integer n ≥ 0.
(5) every nonzero ideal is a power of M;

Proof. (2 ⇒ 3) Let a ∈ M. There is some n for which Mn ⊂ (a)
(by“Poor Man’s Factorization” in Noetherian rings) but Mn−1 is not
contained in (a) (note n − 1 could be zero). Let b ∈ Mn−1 \ (a)
and let x = a/b. We can show that M = Rx. This is equivalent to
showing that x−1M = R. Note that since (b) is not in (a), b/a = x−1

cannot be in R. Hence, it cannot be integral over R. By Cayley-
Hamilton, x−1M 6= M since M is finitely generated as an R-module
and x−1 /∈ R and R is integrally closed. Since x−1M is an R-module
and x−1M⊂ A (this follows from the fact that bM⊂Mn ⊂ (a)), this
means that x−1M is an ideal of R not contained inM. So x−1M = R,
as desired. �

One more criterion related to being a DVR.

Proposition 7.2. LEt A be a Noetherian local ring with maximal ideal
M. Supppose that

Rx1 + · · ·+ Rxn +M2 = M,

for xi ∈ R. Then Rx1 + · · ·+ Rxn = M.

Proof. Let N = M/(Rx1 + . . . Rxn. Then MN = N , so N = 0 by
Nakayama’s lemma, since N is finitely generated. �

Corollary 7.3. Let A be a Noetherian local ring. LetM be its maximal
ideal and let k be the residue field A/M. Then

dimkM/M2 = 1

if and only if M is principal

Proof. One direction is easy: If M is generated by π, then M/M2 is
generated by the image of π modulo M2. To prove the other direction,
suppose that M/M2 has dimension 1. Then we can write M = Ra +
M2 for some a ∈ M. Then the module M = M/a has the property
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that MM = M , since any element in M can be written as ca + d for
c ∈ R and d ∈ M2. By Nakayama’s lemma, we thus have M = 0, so
M = Ra. �

Proposition 7.4. Let R be a domain and let S ⊂ R be a multiplicative
subset not containing 0. Let b ∈ K, where K is the field of fractions
of R. Then b is integral over S−1R ⇔ sb is integral over R for some
s ∈ S.

Proof. If b is integral over S−1R, then we can write

bn +
an−1

sn−1

bn−1 + · · ·+ b0

s0

= 0.

Letting s =
∏n−1

i=0 si and multiplying through by sn we obtain

(sb)n + a′n−1(sb)
n−1 + · · ·+ a′0 = 0

where

a′i = sn−i−1

n∏
j=1
j 6=i

siai

which is clearly in R. Hence sb is integral over R. Similarly, if an
element sb with b ∈ S−1R and s ∈ S satisfies an equation

(sb)n + an−1(sb)
n−1 + · · ·+ a0 = 0,

with ai ∈ R, then dividing through by sn gives an equation

bn +
an−1

s
bn−1 + · · ·+ a0

sn
,

with coefficients in S−1R.
�

Corollary 7.5. If R is integrally closed, then S−1R is integrally closed.

Proof. When R is integrally closed, any b that is integral over R is in R.
Since any element c ∈ K that is integral over S−1R has the property
that sc is integral over R for some s ∈ S, this means that sc ∈ R for
some s ∈ S and hence that c ∈ S−1R.

�

Lemma 7.6. Let A ⊆ B be domains and suppose that every element
of B is algebraic over A. Then for every ideal nonzero I of B, we have
I ∩ A 6= 0.

Proof. Let b ∈ A be nonzero. Since b is algebraic over A and b 6= 0, we
can write

anb
n + · · ·+ a0 = 0,

for ai ∈ A and a0 6= 0. Then a0 ∈ I ∩ Z. �
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Theorem 7.7. Let α be an algebraic number that is integral over Z.
Suppose that Z[α] is integrally closed. Then Z[α] is a Dedekind domain.

Proof. Since Z[α] is a finitely generated Z-module, any ideal of Z[α[ is
also a finitely generated Z-module. Hence, any ideal of Z[α] is finitely
generated over Z[α], so Z[α] is Noetherian. Let Q be a prime in Z[α].
Then, Q ∩ Z is a prime ideal (p) in Z. Hence, Z[α]/Q is a quotient
of Fp[X]/f(X) where f(X) is the minimal monic satisfied by α. Since
Fp[X]/f(X) has dimension 0 (Exercise 7 on the homework), this im-
plies that Z[α]/Q is a field so Q must be maximal. �

Remark 7.8. The rings we deal with will not in general have this form.


