Math 531 Tom Tucker
Let's finish off the Proposition from last time.
Proposition 7.1. Let R be a Noetherian local domain of dimension 1 with maximal ideal \mathcal{M} and with $R / \mathcal{M}=k$ its residue field. Then the following are equivalent
(1) R is a DVR;
(2) R is integrally closed;
(3) \mathcal{M} is principal;
(4) there is some $\pi \in R$ such that every element $a \in R$ can be written uniquely as $u \pi^{n}$ for some unit u and some integer $n \geq 0$.
(5) every nonzero ideal is a power of \mathcal{M};

Proof. $(2 \Rightarrow 3)$ Let $a \in \mathcal{M}$. There is some n for which $\mathcal{M}^{n} \subset(a)$ (by "Poor Man's Factorization" in Noetherian rings) but \mathcal{M}^{n-1} is not contained in (a) (note $n-1$ could be zero). Let $b \in \mathcal{M}^{n-1} \backslash(a)$ and let $x=a / b$. We can show that $\mathcal{M}=R x$. This is equivalent to showing that $x^{-1} \mathcal{M}=R$. Note that since (b) is not in $(a), b / a=x^{-1}$ cannot be in R. Hence, it cannot be integral over R. By CayleyHamilton, $x^{-1} \mathcal{M} \neq \mathcal{M}$ since \mathcal{M} is finitely generated as an R-module and $x^{-1} \notin R$ and R is integrally closed. Since $x^{-1} \mathcal{M}$ is an R-module and $x^{-1} \mathcal{M} \subset A$ (this follows from the fact that $b \mathcal{M} \subset \mathcal{M}^{n} \subset(a)$), this means that $x^{-1} \mathcal{M}$ is an ideal of R not contained in \mathcal{M}. So $x^{-1} \mathcal{M}=R$, as desired.

One more criterion related to being a DVR.
Proposition 7.2. LEt A be a Noetherian local ring with maximal ideal M. Supppose that

$$
R x_{1}+\cdots+R x_{n}+\mathcal{M}^{2}=\mathcal{M}
$$

for $x_{i} \in R$. Then $R x_{1}+\cdots+R x_{n}=\mathcal{M}$.
Proof. Let $N=\mathcal{M} /\left(R x_{1}+\ldots R x_{n}\right.$. Then $\mathcal{M} N=N$, so $N=0$ by Nakayama's lemma, since N is finitely generated.
Corollary 7.3. Let A be a Noetherian local ring. Let \mathcal{M} be its maximal ideal and let k be the residue field A / \mathcal{M}. Then

$$
\operatorname{dim}_{k} \mathcal{M} / \mathcal{M}^{2}=1
$$

if and only if \mathcal{M} is principal
Proof. One direction is easy: If \mathcal{M} is generated by π, then $\mathcal{M} / \mathcal{M}^{2}$ is generated by the image of π modulo \mathcal{M}^{2}. To prove the other direction, suppose that $\mathcal{M} / \mathcal{M}^{2}$ has dimension 1 . Then we can write $\mathcal{M}=R a+$ \mathcal{M}^{2} for some $a \in \mathcal{M}$. Then the module $M=\mathcal{M} / a$ has the property
that $\mathcal{M} M=M$, since any element in M can be written as $c a+d$ for $c \in R$ and $d \in \mathcal{M}^{2}$. By Nakayama's lemma, we thus have $M=0$, so $\mathcal{M}=R a$.

Proposition 7.4. Let R be a domain and let $S \subset R$ be a multiplicative subset not containing 0 . Let $b \in K$, where K is the field of fractions of R. Then b is integral over $S^{-1} R \Leftrightarrow s b$ is integral over R for some $s \in S$.
Proof. If b is integral over $S^{-1} R$, then we can write

$$
b^{n}+\frac{a_{n-1}}{s_{n-1}} b^{n-1}+\cdots+\frac{b_{0}}{s_{0}}=0 .
$$

Letting $s=\prod_{i=0}^{n-1} s_{i}$ and multiplying through by s^{n} we obtain

$$
(s b)^{n}+a_{n-1}^{\prime}(s b)^{n-1}+\cdots+a_{0}^{\prime}=0
$$

where

$$
a_{i}^{\prime}=s^{n-i-1} \prod_{\substack{j=1 \\ j \neq i}}^{n} s_{i} a_{i}
$$

which is clearly in R. Hence $s b$ is integral over R. Similarly, if an element $s b$ with $b \in S^{-1} R$ and $s \in S$ satisfies an equation

$$
(s b)^{n}+a_{n-1}(s b)^{n-1}+\cdots+a_{0}=0
$$

with $a_{i} \in R$, then dividing through by s^{n} gives an equation

$$
b^{n}+\frac{a_{n-1}}{s} b^{n-1}+\cdots+\frac{a_{0}}{s^{n}}
$$

with coefficients in $S^{-1} R$.

Corollary 7.5. If R is integrally closed, then $S^{-1} R$ is integrally closed.
Proof. When R is integrally closed, any b that is integral over R is in R. Since any element $c \in K$ that is integral over $S^{-1} R$ has the property that $s c$ is integral over R for some $s \in S$, this means that $s c \in R$ for some $s \in S$ and hence that $c \in S^{-1} R$.

Lemma 7.6. Let $A \subseteq B$ be domains and suppose that every element of B is algebraic over A. Then for every ideal nonzero I of B, we have $I \cap A \neq 0$.
Proof. Let $b \in A$ be nonzero. Since b is algebraic over A and $b \neq 0$, we can write

$$
a_{n} b^{n}+\cdots+a_{0}=0
$$

for $a_{i} \in A$ and $a_{0} \neq 0$. Then $a_{0} \in I \cap \mathbb{Z}$.

Theorem 7.7. Let α be an algebraic number that is integral over \mathbb{Z}. Suppose that $\mathbb{Z}[\alpha]$ is integrally closed. Then $\mathbb{Z}[\alpha]$ is a Dedekind domain.

Proof. Since $\mathbb{Z}[\alpha]$ is a finitely generated \mathbb{Z}-module, any ideal of $\mathbb{Z}[\alpha[$ is also a finitely generated \mathbb{Z}-module. Hence, any ideal of $\mathbb{Z}[\alpha]$ is finitely generated over $\mathbb{Z}[\alpha]$, so $\mathbb{Z}[\alpha]$ is Noetherian. Let \mathcal{Q} be a prime in $Z[\alpha]$. Then, $\mathcal{Q} \cap \mathbb{Z}$ is a prime ideal (p) in \mathbb{Z}. Hence, $\mathbb{Z}[\alpha] / \mathcal{Q}$ is a quotient of $\mathbf{F}_{p}[X] / f(X)$ where $f(X)$ is the minimal monic satisfied by α. Since $\mathbf{F}_{p}[X] / f(X)$ has dimension 0 (Exercise 7 on the homework), this implies that $\mathbb{Z}[\alpha] / \mathcal{Q}$ is a field so \mathcal{Q} must be maximal.
Remark 7.8. The rings we deal with will not in general have this form.

