Math 531
Notes from last time

e You do not need Zorn’s lemma in anything we did yesterday.
You do need Zorn’s lemma to show that any ideal is contained
in a maximal ideal.

e [ made a slight error in the proof that the ascending chain condi-
tion implies that all ideals are finitely generated. I should have
done this — let J be an ideal and let S be the set of all finitely
generated ideals contained in J. Then this set has a maximal
element and it must be J. Also, in general we will consider R
to be an ideal of itself (we’ll need this later). However, R is not
considered to be a prime ideal of R.

e It is more standard to say that R is locally principal if Rp is
a principal ideal domain for ever P. This is equivalent to the
definition I gave when R is Noetherian.

Some theorems from the book about localization. A quick note on
prime ideals: we do not consider the whole ring R to be a prime ideal.

Lemma 4.1. Let R be an integral domain. Let S be a multiplicative
subset of R that does not contain 0. There is a bijection between the
primes in R that do not intersect S and the primes in Rg.

Proof. The idea was that for any prime Q in S™'R, we know that
ON(RNS) is empty. Then, for any P, we have that S™!RP is a prime
ideal in S7'R. O

Notation S™'R is often denoted as Rg.

Forming S™'R is called localizing R. We define a local ring to be a
ring with only one maximal ideal, e.g. Z, is a local ring.

Let’s first show a weak unique factorization result that holds for all
Noetherian rings.

Proposition 4.2. (Poor man’s unique factorization) Let R be a Noe-
thertan ring and let I be an ideal in R. Then I has the property that
there exist (not necessarily distinct) prime ideals (P;)!_, such that
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Proof. Let S be the set of ideals of R not having this property. Then
S has a maximal element, call it . We can assume [ is not prime

since prime ideals trivially have the desired property. Thus, there exist
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a,b ¢ I such that ab € I. The ideals I + Ra and I + Rb are larger than
I, so must have prime ideals P; and Q; such that
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and I does have the desired property after all. 0

There is no uniqueness at all here. Let’s get a very, very weak unique-
ness result for for local rings.

Proposition 4.3. Let R be a local integral domain with maximal ideal

M. Then M™ # M forn > 1.

Proof. Since M"™ # 0 for any n, we may apply Nakayama’s lemma
below to M considered as an R-module. 0

Lemma 4.4. (Nakayama’s lemma) Let R be a local ring with mazimal
ideal M and let M be a finitely generated R-module. Suppose that
MM = M. Then M = 0.

Proof. The proof is similar to that of the Cayley-Hamilton theorem.
Let mq,...,m, generate M. Then MM will be the set of all sums

n
>~ a;m; where a; € M. In particular, we can write
i=1

n

l-m,- = E Ai5Mj.
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We form the matrix 7' := I — [a;;] as n x n matrix over A and treat as
an endomorphism of M™ (as in Cayley-Hamilton). Then, as in Cayley-
Hamilton 7'(myq,...,my)" = 0 (i.e., T times the column vector with
entries m;), which means that UT(my, ..., m,)" = 0 which means that
(det T'Ym; = 0 for each i, so (det )M = 0. Expanding out det T, we
note that all the a;; are in M so we obtain

(1" + 1" by 1" b)) M = 0.
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Now 1+b,,_1+...by is not in M so it must be a unit u. Then we have
uM =0, so u 'uM =0, so 1M =0, so M = 0. O

Earlier we said that we wanted to show that O had many of the
same properties as Z. What we will in fact show is that Ok is something
called a Dedekind domain. A Dedekind domain is a simple kind of ring.
Let us first define an even simpler kind of ring, a discrete valuation ring,
frequently called a DVR.

Definition 4.5. A discrete valuation on a field K is a surjective ho-
momorphism from K* onto the additive group of Z such that

(1) v(zy) = v(@) + (y);
(2) v(z +y) = min(v(z), v(y))-

By convention, we say that v(0) = oo.

Remark 4.6. Note that it follows from property 2 that if v(z) > v(y),
then v(z 4+ y) = v(y). To prove this we note that v(—x) = v(z) and
v(y) = v(—y), so we have

v(y) = min(v(z +y), v(=z)) = v(z +y)
since v(x) > v(y). Since v(z +y) > min(v(x),v(y)) also, we must have
v(e +y) = v(y).
Example 4.7. Let v, be the p-adic valuation on Q. That is to say

that v,(a) is the largest power dividing a for a € Z and v,(a/b) =
vp(a) — v,(b) for a,b € Z.

Definition 4.8. A discrete valuation R ring is a set of the form
{a € K | v(a) >0}

Note that since we have assumed that v is surjective a field is not a
DVR. This is different from the terminology used in the book. The key
fact about DVR’s is that if we pick a 7 for which v(7w) = 1, then every
element in a in R can be written as un™ for some n > 0. Indeed, this
follows form the fact that a/7%® must have valuation 1 and therefore
be a unit. Thus, Ra is the only maximal ideal in R.

Now, to define Dedekind domains.

Definition 4.9. A Dedekind domain is a domain R with the property
that Rp is a DVR for every prime P.

Example 4.10. Take the ring Z. For any nozero prime (p), it is easy
to check that Z, is the DVR corresponding the p-adic valuation.



