
Math 531

Notes from last time

• You do not need Zorn’s lemma in anything we did yesterday.
You do need Zorn’s lemma to show that any ideal is contained
in a maximal ideal.

• I made a slight error in the proof that the ascending chain condi-
tion implies that all ideals are finitely generated. I should have
done this – let J be an ideal and let S be the set of all finitely
generated ideals contained in J . Then this set has a maximal
element and it must be J . Also, in general we will consider R
to be an ideal of itself (we’ll need this later). However, R is not
considered to be a prime ideal of R.

• It is more standard to say that R is locally principal if RP is
a principal ideal domain for ever P . This is equivalent to the
definition I gave when R is Noetherian.

Some theorems from the book about localization. A quick note on
prime ideals: we do not consider the whole ring R to be a prime ideal.

Lemma 4.1. Let R be an integral domain. Let S be a multiplicative
subset of R that does not contain 0. There is a bijection between the
primes in R that do not intersect S and the primes in RS.

Proof. The idea was that for any prime Q in S−1R, we know that
Q∩ (R∩S) is empty. Then, for any P , we have that S−1RP is a prime
ideal in S−1R. �

Notation S−1R is often denoted as RS.
Forming S−1R is called localizing R. We define a local ring to be a

ring with only one maximal ideal, e.g. Z(p) is a local ring.
Let’s first show a weak unique factorization result that holds for all

Noetherian rings.

Proposition 4.2. (Poor man’s unique factorization) Let R be a Noe-
therian ring and let I be an ideal in R. Then I has the property that
there exist (not necessarily distinct) prime ideals (Pi)

n
i=1 such that

• Pi ⊃ I for each i; and

•
n∏

i=1

Pi ⊂ I.

Proof. Let S be the set of ideals of R not having this property. Then
S has a maximal element, call it I. We can assume I is not prime
since prime ideals trivially have the desired property. Thus, there exist
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a, b /∈ I such that ab ∈ I. The ideals I +Ra and I +Rb are larger than
I, so must have prime ideals Pi and Qj such that

n∏
i=1

Pi ⊂ I + Ra

with Pi ⊃ I + Ra ⊃ I and
n∏

i=1

Qi ⊂ I + Rb

with Qi ⊃ I + Rb ⊃ I. Also, (I + Ra)(I + Rb) ⊂ I so

n∏
i=1

Pi

n∏
i=1

Qi ⊂ I

and I does have the desired property after all. �

There is no uniqueness at all here. Let’s get a very, very weak unique-
ness result for for local rings.

Proposition 4.3. Let R be a local integral domain with maximal ideal
M. Then Mn 6= Mn+1 for n ≥ 1.

Proof. Since Mn 6= 0 for any n, we may apply Nakayama’s lemma
below to M considered as an R-module. �

Lemma 4.4. (Nakayama’s lemma) Let R be a local ring with maximal
ideal M and let M be a finitely generated R-module. Suppose that
MM = M . Then M = 0.

Proof. The proof is similar to that of the Cayley-Hamilton theorem.
Let m1, . . . ,mn generate M . Then MM will be the set of all sums
n∑

j=1

ajmj where aj ∈M. In particular, we can write

1 ·mi =
n∑

j=1

aijmj.

We form the matrix T := I − [aij] as n× n matrix over A and treat as
an endomorphism of Mn (as in Cayley-Hamilton). Then, as in Cayley-
Hamilton T (m1, . . . ,mn)t = 0 (i.e., T times the column vector with
entries mi), which means that UT (m1, . . . ,mn)t = 0 which means that
(det T )mi = 0 for each i, so (det T )M = 0. Expanding out det T , we
note that all the aij are in M so we obtain

(1n + 1n−1 + bn−11
n−1 + · · ·+ b0)M = 0.
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Now 1+ bn−1 + . . . b0 is not in M so it must be a unit u. Then we have
uM = 0, so u−1uM = 0, so 1M = 0, so M = 0. �

Earlier we said that we wanted to show that OK had many of the
same properties as Z. What we will in fact show is thatOK is something
called a Dedekind domain. A Dedekind domain is a simple kind of ring.
Let us first define an even simpler kind of ring, a discrete valuation ring,
frequently called a DVR.

Definition 4.5. A discrete valuation on a field K is a surjective ho-
momorphism from K∗ onto the additive group of Z such that

(1) v(xy) = v(x) + (y);

(2) v(x + y) ≥ min(v(x), v(y)).

By convention, we say that v(0) = ∞.

Remark 4.6. Note that it follows from property 2 that if v(x) > v(y),
then v(x + y) = v(y). To prove this we note that v(−x) = v(x) and
v(y) = v(−y), so we have

v(y) ≥ min(v(x + y), v(−x)) ≥ v(x + y)

since v(x) > v(y). Since v(x + y) ≥ min(v(x), v(y)) also, we must have
v(x + y) = v(y).

Example 4.7. Let vp be the p-adic valuation on Q. That is to say
that vp(a) is the largest power dividing a for a ∈ Z and vp(a/b) =
vp(a)− vp(b) for a, b ∈ Z.

Definition 4.8. A discrete valuation R ring is a set of the form

{a ∈ K | v(a) ≥ 0}

Note that since we have assumed that v is surjective a field is not a
DVR. This is different from the terminology used in the book. The key
fact about DVR’s is that if we pick a π for which v(π) = 1, then every
element in a in R can be written as uπn for some n ≥ 0. Indeed, this
follows form the fact that a/πv(a) must have valuation 1 and therefore
be a unit. Thus, Ra is the only maximal ideal in R.

Now, to define Dedekind domains.

Definition 4.9. A Dedekind domain is a domain R with the property
that RP is a DVR for every prime P .

Example 4.10. Take the ring Z. For any nozero prime (p), it is easy
to check that Z(p) is the DVR corresponding the p-adic valuation.


