Math 531

Before, going on, let’s prove one more thing about integrality... do
Prop. 2.5 here.

Proposition 3.1. (Prop. 2.5 from Janusz) Let R be a domain with
field of fractions K and let L be an algebraic extension of K. Letb € L
and let f(X) be the minimal polynomial for b that has coefficients in K
and leading coefficient 1. Then, the coefficients of f are integral over
R whenever b is integral over R. In particular, if R is integrally closed
in K and b is integral over R, then the coefficients of f are in R.

Proof. Suupose that b is integral over R. We can write
f(X) = (X =bi)(X =ba) -+ (X — b)),

by extending L to some field F over which f splits. Note that any
polynomial satisfied by b is divisible by f in K[X], so if b satisfies an
integral polynomial with coefficients in R, so do all of the other b;.
Hence, if b is integral then so are all of the b;. The coefficients of f are
all in the ring R[by,...,b,], so this also means that the coefficients of
f are integral over R as desired. Now, since these coefficients are also
in K, they are actually in R if R is integrally closed. O

So, to check if something is integral, all we have to do is check its
minimal polynomial. Example, let & = /11 /7. Tts minimal polynomial
is X? — 11/49 which isn’t integral over Z, so we're done.

Last time we were in the process of defining Noetherian rings. Re-
call...

Definition 3.2. A ring A is said to be Noetherian if it satisfies the
ascending chain condition which states that if there is a sequence of
ideals I,,, such that

LhchChLc---CL,C...

then there is an N such that for all n > N, we have [, = [,;;1. In
other word, the chain becomes stationary.

A quick word on maximality: an ideal I is maximal if there is no
larger proper ideal J containing /. Maximal ideals are usually written

as M.

Lemma 3.3. Let A be a Noetherian ring. Any subset S of ideals of A
has a mazimal element (here maximal means that there is no strictly
larger ideal I' O I in S).
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Proof. Let Iy € §. If I is not maximal in § there is a larger ideal
I, € § containing I. Similarly, if /; is not maximal there is a larger
ideal I, € § containing it and so on, so we have an ascending chain of
ideals

IOgllggImga

which means that there is some N such that for all n > N, we have
I, = I,.1 Then [y is a maximal element of S. ]

Proposition 3.4. R is Noetherian < every ideal of R is finitely gen-
erated.

Proof. (=) Let J be an ideal and let S; be set of all finitely generated
ideals contained in J. This set is nonempty since for any a € J, the
ideal Ra C J is finitely generated. Let I be a maximal element of S;.
If I is not equal to J, then there is some b € J such that b ¢ I. But
I + Ra is also finitely generated and strictly larger than I, so this is
impossible. Thus, I = J and j is finitely generated.

(<) Let

Lhchc---CL,C...,

be an ascending chain of ideals. Then U521} is an ideal (easy to check)
and is finitely generated, by, say, the set aq,...,a,. Each a; is in some
I; so there is an Iy containing all of the a;. Thus, Iy = U205 and
I,y =1, for every n > N.

O

Recall an ideal P is said to be prime if ab € P implies that either
ac€ePorbeP.

Definition 3.5. The dimension of a ring is the largest n for which
there exists a chain of prime ideals

PoCPrC-- C Py,
where the P; are prime ideals and P; # P;yq (fori=1,...,n—1).

Not all rings are finite dimensional, e.g. k[(z;)52,]. This ring isn’t
Noetherian either. But furthermore, not all Noetherian rings are finite
dimensional. However, all local Noetherian rings are finite dimensional.

Now, let’s define localization... Let A be a domain and let S C A
be closed under multiplication and suppose that 0 ¢ S. Then, we can
form a the ring S~'A which is the set of fraction of the form

a

S



where a € A and s € S subject to the equivalence relation
a b

S t

if at = bs. It is easy to check that is well-defined, e.g. that if at = bs
and a't’ = b's’ then

ab a'b
st st
and
a b d UV

st st
Note furthermore that s/s serves as 1 and that 0/s serves as 0. Also
there is a natural map sending A into S~ A by fixing s € S and sending
a to as/s.

Remark 3.6. Note that we need to change things slightly when S con-
tains zero divisors. We say that a/s = a’/s’ if there exists some t € S
such that tas’ = ta's.

On the other hand, when A is a domain the map A — S7'A is
always injective. Since a/1 = 0/t implies that at = 0 which implies
that a = 0.

When P is a prime elements than A\ P is multiplicatively closed set
since a, b ¢ P implies that ab ¢ P. This is the most important example
of localization and in this case S™'A is written as Ap. Examples...

Example 3.7. Localizing Z at the ideal (p) for p a prime number we
get the set of elements of Q that can be written as a/s where s is not
divisible by p.

Some more notation...people frequently write Rg rather S~ R simply
because it is easier to write (for example, Janusz does this).

Some theorems from the book about localization. A quick note on
prime ideals: we do not consider the whole ring R to be a prime ideal.

Lemma 3.8. Let R be an integral domain. Let S be a multiplicative
subset of R that does not contain 0. There is a bijection between the
primes in R that do not intersect S and the primes in Rg.

Proof. Denote the map from R into Rg as ¢. Every prime ideal Q in
Rs pulls back to a prime ideal ¢~1(Q) of R. We also see that an ideal
P in R is equal to ¢~1(Q) for some Q in Rg if #(P) is a prime ideal
and ¢~ 1(¢(P)) = P. Now, if there is some s € S NP, then clearly
RsP =1, since %s = 1. So it only remains to show that if P is a prime
that doesn’t intersect S, then R,P is a prime ideal. It is easy to see
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that RsP consists of all a/s for which a € P and s € S. Now, suppose
that
Ty a
tt s
forx,y € R, t,t' € S and a/s € Rg. Then zys = att’, so xy € P (since
s & P, so either z or y is in P, so either =/t or y/t' is in RgP. Thus,

RsP is indeed a prime ideal. O

Forming S™'R is called localizing R. We define a local ring to be a
ring with only one maximal ideal, e.g. Z,) is a local ring.



