
Math 531

Before, going on, let’s prove one more thing about integrality... do
Prop. 2.5 here.

Proposition 3.1. (Prop. 2.5 from Janusz) Let R be a domain with
field of fractions K and let L be an algebraic extension of K. Let b ∈ L
and let f(X) be the minimal polynomial for b that has coefficients in K
and leading coefficient 1. Then, the coefficients of f are integral over
R whenever b is integral over R. In particular, if R is integrally closed
in K and b is integral over R, then the coefficients of f are in R.

Proof. Suupose that b is integral over R. We can write

f(X) = (X − b1)(X − b2) · · · (X − bn),

by extending L to some field E over which f splits. Note that any
polynomial satisfied by b is divisible by f in K[X], so if b satisfies an
integral polynomial with coefficients in R, so do all of the other bi.
Hence, if b is integral then so are all of the bi. The coefficients of f are
all in the ring R[b1, . . . , bn], so this also means that the coefficients of
f are integral over R as desired. Now, since these coefficients are also
in K, they are actually in R if R is integrally closed. �

So, to check if something is integral, all we have to do is check its
minimal polynomial. Example, let α =

√
11/7. Its minimal polynomial

is X2 − 11/49 which isn’t integral over Z, so we’re done.
Last time we were in the process of defining Noetherian rings. Re-

call...

Definition 3.2. A ring A is said to be Noetherian if it satisfies the
ascending chain condition which states that if there is a sequence of
ideals Im such that

I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Im ⊆ . . .

then there is an N such that for all n ≥ N , we have In = In+1. In
other word, the chain becomes stationary.

A quick word on maximality: an ideal I is maximal if there is no
larger proper ideal J containing I. Maximal ideals are usually written
as M.

Lemma 3.3. Let A be a Noetherian ring. Any subset S of ideals of A
has a maximal element (here maximal means that there is no strictly
larger ideal I ′ ⊃ I in S).
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Proof. Let I0 ∈ S. If I is not maximal in S there is a larger ideal
I1 ∈ S containing I0. Similarly, if I1 is not maximal there is a larger
ideal I2 ∈ S containing it and so on, so we have an ascending chain of
ideals

I0 ⊆ I1 ⊆ · · · ⊆ Im ⊆ . . . ,

which means that there is some N such that for all n ≥ N , we have
In = In+1 Then IN is a maximal element of S. �

Proposition 3.4. R is Noetherian ⇔ every ideal of R is finitely gen-
erated.

Proof. (⇒) Let J be an ideal and let SJ be set of all finitely generated
ideals contained in J . This set is nonempty since for any a ∈ J , the
ideal Ra ⊂ J is finitely generated. Let I be a maximal element of SJ .
If I is not equal to J , then there is some b ∈ J such that b /∈ I. But
I + Ra is also finitely generated and strictly larger than I, so this is
impossible. Thus, I = J and j is finitely generated.
(⇐) Let

I0 ⊆ I1 ⊆ · · · ⊆ Im ⊆ . . . ,

be an ascending chain of ideals. Then ∪∞j=0Ij is an ideal (easy to check)
and is finitely generated, by, say, the set a1, . . . , a`. Each ai is in some
Ij so there is an IN containing all of the ai. Thus, IN = ∪∞j=0Ij and
In+1 = In for every n ≥ N .

�

Recall an ideal P is said to be prime if ab ∈ P implies that either
a ∈ P or b ∈ P .

Definition 3.5. The dimension of a ring is the largest n for which
there exists a chain of prime ideals

P0 ⊂ P1 ⊂ · · · ⊂ Pn,

where the Pi are prime ideals and Pi 6= Pi+1 (for i = 1, . . . , n− 1).

Not all rings are finite dimensional, e.g. k[(xi)
∞
i=1]. This ring isn’t

Noetherian either. But furthermore, not all Noetherian rings are finite
dimensional. However, all local Noetherian rings are finite dimensional.

Now, let’s define localization... Let A be a domain and let S ⊂ A
be closed under multiplication and suppose that 0 /∈ S. Then, we can
form a the ring S−1A which is the set of fraction of the form

a

s
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where a ∈ A and s ∈ S subject to the equivalence relation

a

s
=

b

t

if at = bs. It is easy to check that is well-defined, e.g. that if at = bs
and a′t′ = b′s′ then

a

s

b

t
=

a′

s′
b′

t′

and
a

s
+

b

t
=

a′

s′
+

b′

t′
.

Note furthermore that s/s serves as 1 and that 0/s serves as 0. Also
there is a natural map sending A into S−1A by fixing s ∈ S and sending
a to as/s.

Remark 3.6. Note that we need to change things slightly when S con-
tains zero divisors. We say that a/s = a′/s′ if there exists some t ∈ S
such that tas′ = ta′s.

On the other hand, when A is a domain the map A −→ S−1A is
always injective. Since a/1 = 0/t implies that at = 0 which implies
that a = 0.

When P is a prime elements than A\P is multiplicatively closed set
since a, b /∈ P implies that ab /∈ P . This is the most important example
of localization and in this case S−1A is written as AP . Examples...

Example 3.7. Localizing Z at the ideal (p) for p a prime number we
get the set of elements of Q that can be written as a/s where s is not
divisible by p.

Some more notation...people frequently write RS rather S−1R simply
because it is easier to write (for example, Janusz does this).

Some theorems from the book about localization. A quick note on
prime ideals: we do not consider the whole ring R to be a prime ideal.

Lemma 3.8. Let R be an integral domain. Let S be a multiplicative
subset of R that does not contain 0. There is a bijection between the
primes in R that do not intersect S and the primes in RS.

Proof. Denote the map from R into RS as φ. Every prime ideal Q in
RS pulls back to a prime ideal φ−1(Q) of R. We also see that an ideal
P in R is equal to φ−1(Q) for some Q in RS if φ(P) is a prime ideal
and φ−1(φ(P)) = P . Now, if there is some s ∈ S ∩ P , then clearly
RSP = 1, since 1

s
s = 1. So it only remains to show that if P is a prime

that doesn’t intersect S, then RsP is a prime ideal. It is easy to see
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that RsP consists of all a/s for which a ∈ P and s ∈ S. Now, suppose
that

x

t

y

t′
=

a

s
for x, y ∈ R, t, t′ ∈ S and a/s ∈ RS. Then xys = att′, so xy ∈ P (since
s /∈ P, so either x or y is in P , so either x/t or y/t′ is in RSP . Thus,
RSP is indeed a prime ideal. �

Forming S−1R is called localizing R. We define a local ring to be a
ring with only one maximal ideal, e.g. Z(p) is a local ring.


