Math 531 Tom Tucker
NOTE: ALL RINGS IN THIS CLASS ARE COMMUTATIVE WITH
MULTIPLICATIVE IDENTITY 1 (1-a = a for every a € A, where A
is the ring) AND ADDITIVE IDENTITY 0 (04 a = a for every a € A
where A is the ring)

Definition 2.1. A ring R is called a principal ideal domain if for any
ideal I C R there is an element a € I, such that I = Ra.

Later we’ll see that for the rings we work with in this class, principal
ideal domains and unique factorization domains are the same thing.

Proposition 2.2 (Easy). Let A C B. Then b is integral over A <
A[b] is finitely generated as an A-module.

Proof. (=) Writing
"+ a, 0"+ +ab4ag =0,

we see that b" is contained in the A-module generated by {1,0,... 0" 1}.
Similarly, by induction on r > 0, we see that b"*" is contained in the
A-module generated by {1,b,...,b" '}, since

V' = (b 4 ap b A arh + ag)b
and is therefore contained in A-module generated by {1,b,...,b" =1},

N, ‘

(<) Let > a;;b* generate A[b]. Then for M larger than the largest IV,
i=1

the element b can be written as A-linear combination of lower powers

of b. This yields an integral polynomial over A satisfied by b. 0

Definition 2.3. We say that A C B is integral, or that B is integral
over A if every b € B is integral over A.

Corollary 2.4. If A C B is integral and B C C' 1is integral, then
A C C is integral.

Proof. Exercise. O

Example 2.5. The primitive n-th root of unity &, is integral over Z
since it satisfies " — 1 = 0.

Example 2.6. i/2 is not integral over Z. Let’s look at the algebra B
it generates over Z. Suppose it was finitely generated as an Z-module.
Then if M is the maximal power of 2 appearing in the denominator
of a generator, then M is the maximal power of 2 appearing in the
denominator of any element of B. But there are arbitrarily high powers
of 2 appearing in the denominator of elements in B.

1



2

Theorem 2.7. (Cayley-Hamilton) Let A C B, where A and B are
domains. Suppose that M 1is a finitely generated A-module with gener-
ators my, ..., my. Suppose that that M is also a faithful A[b]-module
(this means the only element that annihilates all of M is 0) and that b
acts on the generators m; in the following way

n

j=1
Then b satisfies the equation
b—ay1 —aps R AT
det —a21 b—azp -+ —ag, —0.
—Upna —Qp1 - Ann

Proof. Let T be the matrix b — [a;;]. The theorem then says that
det T' = 0. Notice that we can consider T" as an endomorphism of M"
by writing

n
b— 3 ay;x;
=1

b—ay —ap Tt —A1p T1
—a21 b—azx - —ag, .
n
—ap2 —an1 e b — Qpp Tp
b— 3. anjz;
Jj=1
where the x; are elements of M. Let (x1,...,x,) be (mq,...,m,), we
obtain
n
b— > aym;
b—an —a T —A1p ma j=1
—a21 b—axn -+ —az _ _
n
—Qp2 —0Qp1 e b — Qpn my
b— > an;m;
j=1

by equation (1). Now, recall from linear algebra (exercise) that there
is a matrix U, called the adjoint of T, for which UT = detTI. We
obtain

detT 0 - 0 my detT 0
0 detT --- 0 ) ) i

0 0 0 det T my, detT 0
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so (det T')m; = 0 for each m;. Hence (detT") = 0, since (detT') € A[b]
and A[b] acts faithfully on M. O

Corollary 2.8. Let AC B and letb € B. If A[b] C B' C B for a ring
B that is finitely generated as an A-module, then b is integral over A.

Proof. Since b € B’, multiplication by b sends B’ to B’. Moreover,
the resulting map is A-linear (by distributivity of multiplication). Let
mq, ..., my, generated B’ as an A-module. Then, for each ¢ with 1 <

1 < n, we can write
i
b:r:i = E CLZ'jLUj.
j=1

Clearly, the equation

b—an —an o —Apl
—Q12 b—ax -+ —ap
det " =0
—A1n —Aan e b — Ann
is integral. 0

For now, let’s note the following corollary.

Corollary 2.9. Let A C B. Then the set of all elements in B that are
integral over A is a ring.

Proof. We need only show that the elements in B that are integral over
A forms a ring. If @ and 3 are integral over A, then Al«, ] is finitely
generated as an A-module. Hence, —a, a + 3, and a3 are all integral
over A since they are contained in Ala, 8], by the Cayley-Hamilton
theorem above. 0

The following is immediate.

Corollary 2.10. Let K be an extension of Q. Then the set of all
elements in K that are integral over Z. is a ring.

Again let A C B. The set B’ of elements of B that are integral over
A is a ring. We call this ring B’ the integral closure of A in B.

Definition 2.11. Let K be a number field (a finite extension of Q).
The ring of integers of K is integral closure of Z in K. We denote is
as Og.

Ask if people have seen localization.

Definition 2.12. We say that a domain B is integrally closed if it is
integrally closed in its field of fractions.
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Proposition 2.13. Let A C B, where A and B are domains. The ring
B is integrally closed over A if and only if B is integrally closed in its
field of fractions.

Proof. Exercise. OdJ
Example 2.14. Any unique factorization domain is integrally closed.

Let’s do a preview of what properties we want rings of integers to
have. First let’s recall some features of Z:

(1) Z is Noetherian.

(2) Z is 1-dimensional.

(3) Z is a unique factorization domain.
(4) Z is a principal ideal domain.

Recall what a Noetherian ring is.

Definition 2.15. A ring R is Noetherian if every ideal is finitely gen-
erated as an R-module. Equivalently, R is if every ascending chain of
ideals terminates.

Incidentally, we will later see that the conditions (1) and (2) are
often equivalent in the situations we examine.
The rings O will have the properties that

(1) O is Noetherian.

(2) O is 1-dimensional.

(3) Ok has unique factorization for ideals.
(4) Ok is locally a principal ideal domain.

(5) It is possible that Oy is not a unique factorization domain and

that it is not a principal ideal domain.

In fact, any subring B of a number field K that is integral over Z will
be Noetherian and 1-dimensional. That is the Krull-Akizuki theorem
which we will eventually prove.

We used the work “locally” above. Let’s define it.



