NOTE: ALL RINGS IN THIS CLASS ARE COMMUTATIVE WITH MULTIPLICATIVE IDENTITY $1(1 \cdot a=a$ for every $a \in A$, where A is the ring) AND ADDITIVE IDENTITY $0(0+a=a$ for every $a \in A$ where A is the ring)

Definition 2.1. A ring R is called a principal ideal domain if for any ideal $I \subset R$ there is an element $a \in I$, such that $I=R a$.

Later we'll see that for the rings we work with in this class, principal ideal domains and unique factorization domains are the same thing.

Proposition 2.2 (Easy). Let $A \subset B$. Then b is integral over $A \Leftrightarrow$ $A[b]$ is finitely generated as an A-module.
Proof. (\Rightarrow) Writing

$$
b^{n}+a_{n-1} b^{n-1}+\cdots+a_{1} b+a_{0}=0,
$$

we see that b^{n} is contained in the A-module generated by $\left\{1, b, \ldots, b^{n-1}\right\}$. Similarly, by induction on $r>0$, we see that b^{n+r} is contained in the A-module generated by $\left\{1, b, \ldots, b^{n-1}\right\}$, since

$$
b^{n+r}=\left(b^{n}+a_{n-1} b^{n-1}+\cdots+a_{1} b+a_{0}\right) b^{r}
$$

and is therefore contained in A-module generated by $\left\{1, b, \ldots, b^{n+(r-1)}\right\}$. (\Leftarrow) Let $\sum_{i=1}^{N_{i}} a_{i j} b^{i}$ generate $A[b]$. Then for M larger than the largest N_{i}, the element b^{M} can be written as A-linear combination of lower powers of b. This yields an integral polynomial over A satisfied by b.

Definition 2.3. We say that $A \subset B$ is integral, or that B is integral over A if every $b \in B$ is integral over A.
Corollary 2.4. If $A \subset B$ is integral and $B \subset C$ is integral, then $A \subset C$ is integral.

Proof. Exercise.
Example 2.5. The primitive n-th root of unity ξ_{b} is integral over \mathbb{Z} since it satisfies $\xi^{n}-1=0$.
Example 2.6. $i / 2$ is not integral over \mathbb{Z}. Let's look at the algebra B it generates over \mathbb{Z}. Suppose it was finitely generated as an \mathbb{Z}-module. Then if M is the maximal power of 2 appearing in the denominator of a generator, then M is the maximal power of 2 appearing in the denominator of any element of B. But there are arbitrarily high powers of 2 appearing in the denominator of elements in B.

2
Theorem 2.7. (Cayley-Hamilton) Let $A \subset B$, where A and B are domains. Suppose that M is a finitely generated A-module with generators m_{1}, \ldots, m_{n}. Suppose that that M is also a faithful $A[b]$-module (this means the only element that annihilates all of M is 0) and that b acts on the generators m_{i} in the following way

$$
\begin{equation*}
b m_{i}=\sum_{j=1}^{n} a_{i} j m_{j} . \tag{1}
\end{equation*}
$$

Then b satisfies the equation

$$
\operatorname{det}\left(\begin{array}{llll}
b-a_{11} & -a_{12} & \cdots & -a_{1 n} \\
-a_{21} & b-a_{22} & \cdots & -a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
-a_{n 2} & -a_{n 1} & \cdots & b-a_{n n}
\end{array}\right)=0
$$

Proof. Let T be the matrix $b I-\left[a_{i j}\right]$. The theorem then says that $\operatorname{det} T=0$. Notice that we can consider T as an endomorphism of M^{n} by writing

$$
\left(\begin{array}{llll}
b-a_{11} & -a_{12} & \cdots & -a_{1 n} \\
-a_{21} & b-a_{22} & \cdots & -a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
-a_{n 2} & -a_{n 1} & \cdots & b-a_{n n}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right)=\left(\begin{array}{l}
b-\sum_{j=1}^{n} a_{1 j} x_{j} \\
\cdot \\
\cdot \\
b-\sum_{j=1}^{n} a_{n j} x_{j}
\end{array}\right)
$$

where the x_{i} are elements of M. Let $\left(x_{1}, \ldots, x_{n}\right)$ be $\left(m_{1}, \ldots, m_{n}\right)$, we obtain

$$
\left(\begin{array}{llll}
b-a_{11} & -a_{12} & \cdots & -a_{1 n} \\
-a_{21} & b-a_{22} & \cdots & -a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
-a_{n 2} & -a_{n 1} & \cdots & b-a_{n n}
\end{array}\right)\left(\begin{array}{l}
m_{1} \\
\cdot \\
\cdot \\
m_{n}
\end{array}\right)=\left(\begin{array}{l}
b-\sum_{j=1}^{n} a_{1 j} m_{j} \\
\cdot \\
\cdot \\
b-\sum_{j=1}^{n} a_{n j} m_{j}
\end{array}\right)=\left(\begin{array}{l}
0 \\
\cdot \\
\cdot \\
0
\end{array}\right)
$$

by equation (1). Now, recall from linear algebra (exercise) that there is a matrix U, called the adjoint of T, for which $U T=\operatorname{det} T I$. We obtain

$$
\left(\begin{array}{llll}
\operatorname{det} T & 0 & \cdots & 0 \\
0 & \operatorname{det} T & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \operatorname{det} T
\end{array}\right)\left(\begin{array}{l}
m_{1} \\
\cdot \\
\cdot \\
m_{n}
\end{array}\right)=\left(\begin{array}{l}
\operatorname{det} T \\
\cdot \\
\cdot \\
\operatorname{det} T
\end{array}\right)=\left(\begin{array}{l}
0 \\
\cdot \\
\cdot \\
0
\end{array}\right)
$$

so $(\operatorname{det} T) m_{i}=0$ for each m_{i}. Hence $(\operatorname{det} T)=0$, since $(\operatorname{det} T) \in A[b]$ and $A[b]$ acts faithfully on M.

Corollary 2.8. Let $A \subset B$ and let $b \in B$. If $A[b] \subset B^{\prime} \subset B$ for a ring B that is finitely generated as an A-module, then b is integral over A.

Proof. Since $b \in B^{\prime}$, multiplication by b sends B^{\prime} to B^{\prime}. Moreover, the resulting map is A-linear (by distributivity of multiplication). Let m_{1}, \ldots, m_{n} generated B^{\prime} as an A-module. Then, for each i with $1 \leq$ $i \leq n$, we can write

$$
b x_{i}=\sum_{j=1}^{i} a_{i j} x_{j} .
$$

Clearly, the equation

$$
\operatorname{det}\left(\begin{array}{llll}
b-a_{11} & -a_{21} & \cdots & -a_{n 1} \\
-a_{12} & b-a_{22} & \cdots & -a_{n 2} \\
\cdots & \cdots & \cdots & \cdots \\
-a_{1 n} & -a_{2 n} & \cdots & b-a_{n n}
\end{array}\right)=0
$$

is integral.
For now, let's note the following corollary.
Corollary 2.9. Let $A \subset B$. Then the set of all elements in B that are integral over A is a ring.

Proof. We need only show that the elements in B that are integral over A forms a ring. If α and β are integral over A, then $A[\alpha, \beta]$ is finitely generated as an A-module. Hence, $-\alpha, \alpha+\beta$, and $\alpha \beta$ are all integral over A since they are contained in $A[\alpha, \beta]$, by the Cayley-Hamilton theorem above.

The following is immediate.
Corollary 2.10. Let K be an extension of \mathbb{Q}. Then the set of all elements in K that are integral over \mathbb{Z} is a ring.

Again let $A \subset B$. The set B^{\prime} of elements of B that are integral over A is a ring. We call this ring B^{\prime} the integral closure of A in B.

Definition 2.11. Let K be a number field (a finite extension of \mathbb{Q}). The ring of integers of K is integral closure of \mathbb{Z} in K. We denote is as \mathcal{O}_{K}.

Ask if people have seen localization.
Definition 2.12. We say that a domain B is integrally closed if it is integrally closed in its field of fractions.

Proposition 2.13. Let $A \subset B$, where A and B are domains. The ring B is integrally closed over A if and only if B is integrally closed in its field of fractions.

Proof. Exercise.
Example 2.14. Any unique factorization domain is integrally closed.
Let's do a preview of what properties we want rings of integers to have. First let's recall some features of \mathbb{Z} :
(1) \mathbb{Z} is Noetherian.
(2) \mathbb{Z} is 1-dimensional.
(3) \mathbb{Z} is a unique factorization domain.
(4) \mathbb{Z} is a principal ideal domain.

Recall what a Noetherian ring is.
Definition 2.15. A ring R is Noetherian if every ideal is finitely generated as an R-module. Equivalently, R is if every ascending chain of ideals terminates.

Incidentally, we will later see that the conditions (1) and (2) are often equivalent in the situations we examine.

The rings \mathcal{O}_{K} will have the properties that
(1) \mathcal{O}_{k} is Noetherian.
(2) \mathcal{O}_{k} is 1-dimensional.
(3) \mathcal{O}_{k} has unique factorization for ideals.
(4) \mathcal{O}_{k} is locally a principal ideal domain.
(5) It is possible that \mathcal{O}_{k} is not a unique factorization domain and that it is not a principal ideal domain.
In fact, any subring B of a number field K that is integral over \mathbb{Z} will be Noetherian and 1-dimensional. That is the Krull-Akizuki theorem which we will eventually prove.

We used the work "locally" above. Let's define it.

