
Math 531 Tom Tucker

NOTE: ALL RINGS IN THIS CLASS ARE COMMUTATIVE WITH
MULTIPLICATIVE IDENTITY 1 (1 · a = a for every a ∈ A, where A
is the ring) AND ADDITIVE IDENTITY 0 (0+ a = a for every a ∈ A
where A is the ring)

Definition 2.1. A ring R is called a principal ideal domain if for any
ideal I ⊂ R there is an element a ∈ I, such that I = Ra.

Later we’ll see that for the rings we work with in this class, principal
ideal domains and unique factorization domains are the same thing.

Proposition 2.2 (Easy). Let A ⊂ B. Then b is integral over A ⇔
A[b] is finitely generated as an A-module.

Proof. (⇒) Writing

bn + an−1b
n−1 + · · ·+ a1b + a0 = 0,

we see that bn is contained in the A-module generated by {1, b, . . . , bn−1}.
Similarly, by induction on r > 0, we see that bn+r is contained in the
A-module generated by {1, b, . . . , bn−1}, since

bn+r = (bn + an−1b
n−1 + · · ·+ a1b + a0)b

r,

and is therefore contained in A-module generated by {1, b, . . . , bn+(r−1)}.

(⇐) Let
Ni∑
i=1

aijb
i generate A[b]. Then for M larger than the largest Ni,

the element bM can be written as A-linear combination of lower powers
of b. This yields an integral polynomial over A satisfied by b. �

Definition 2.3. We say that A ⊂ B is integral, or that B is integral
over A if every b ∈ B is integral over A.

Corollary 2.4. If A ⊂ B is integral and B ⊂ C is integral, then
A ⊂ C is integral.

Proof. Exercise. �

Example 2.5. The primitive n-th root of unity ξb is integral over Z
since it satisfies ξn − 1 = 0.

Example 2.6. i/2 is not integral over Z. Let’s look at the algebra B
it generates over Z. Suppose it was finitely generated as an Z-module.
Then if M is the maximal power of 2 appearing in the denominator
of a generator, then M is the maximal power of 2 appearing in the
denominator of any element of B. But there are arbitrarily high powers
of 2 appearing in the denominator of elements in B.
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Theorem 2.7. (Cayley-Hamilton) Let A ⊂ B, where A and B are
domains. Suppose that M is a finitely generated A-module with gener-
ators m1, . . . ,mn. Suppose that that M is also a faithful A[b]-module
(this means the only element that annihilates all of M is 0) and that b
acts on the generators mi in the following way

(1) bmi =
n∑

j=1

aijmj.

Then b satisfies the equation

det


b− a11 −a12 · · · −a1n

−a21 b− a22 · · · −a2n

· · · · · · · · · · · ·
−an2 −an1 · · · b− ann

 = 0.

Proof. Let T be the matrix bI − [aij]. The theorem then says that
det T = 0. Notice that we can consider T as an endomorphism of Mn

by writing


b− a11 −a12 · · · −a1n

−a21 b− a22 · · · −a2n

· · · · · · · · · · · ·
−an2 −an1 · · · b− ann




x1

·
·
xn

 =


b−

n∑
j=1

a1jxj

·
·
b−

n∑
j=1

anjxj


where the xi are elements of M . Let (x1, . . . , xn) be (m1, . . . ,mn), we
obtain


b− a11 −a12 · · · −a1n

−a21 b− a22 · · · −a2n

· · · · · · · · · · · ·
−an2 −an1 · · · b− ann




m1

·
·
mn

 =


b−

n∑
j=1

a1jmj

·
·
b−

n∑
j=1

anjmj

 =


0
·
·
0


by equation (1). Now, recall from linear algebra (exercise) that there
is a matrix U , called the adjoint of T , for which UT = det TI. We
obtain

det T 0 · · · 0
0 det T · · · 0
· · · · · · · · · · · ·
0 0 0 det T




m1

·
·
mn

 =


det T
·
·
det T

 =


0
·
·
0


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so (det T )mi = 0 for each mi. Hence (det T ) = 0, since (det T ) ∈ A[b]
and A[b] acts faithfully on M . �

Corollary 2.8. Let A ⊂ B and let b ∈ B. If A[b] ⊂ B′ ⊂ B for a ring
B that is finitely generated as an A-module, then b is integral over A.

Proof. Since b ∈ B′, multiplication by b sends B′ to B′. Moreover,
the resulting map is A-linear (by distributivity of multiplication). Let
m1, . . . ,mn generated B′ as an A-module. Then, for each i with 1 ≤
i ≤ n, we can write

bxi =
i∑

j=1

aijxj.

Clearly, the equation

det


b− a11 −a21 · · · −an1

−a12 b− a22 · · · −an2

· · · · · · · · · · · ·
−a1n −a2n · · · b− ann

 = 0

is integral. �

For now, let’s note the following corollary.

Corollary 2.9. Let A ⊂ B. Then the set of all elements in B that are
integral over A is a ring.

Proof. We need only show that the elements in B that are integral over
A forms a ring. If α and β are integral over A, then A[α, β] is finitely
generated as an A-module. Hence, −α, α + β, and αβ are all integral
over A since they are contained in A[α, β], by the Cayley-Hamilton
theorem above. �

The following is immediate.

Corollary 2.10. Let K be an extension of Q. Then the set of all
elements in K that are integral over Z is a ring.

Again let A ⊂ B. The set B′ of elements of B that are integral over
A is a ring. We call this ring B′ the integral closure of A in B.

Definition 2.11. Let K be a number field (a finite extension of Q).
The ring of integers of K is integral closure of Z in K. We denote is
as OK .

Ask if people have seen localization.

Definition 2.12. We say that a domain B is integrally closed if it is
integrally closed in its field of fractions.
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Proposition 2.13. Let A ⊂ B, where A and B are domains. The ring
B is integrally closed over A if and only if B is integrally closed in its
field of fractions.

Proof. Exercise. �

Example 2.14. Any unique factorization domain is integrally closed.

Let’s do a preview of what properties we want rings of integers to
have. First let’s recall some features of Z:

(1) Z is Noetherian.

(2) Z is 1-dimensional.

(3) Z is a unique factorization domain.

(4) Z is a principal ideal domain.

Recall what a Noetherian ring is.

Definition 2.15. A ring R is Noetherian if every ideal is finitely gen-
erated as an R-module. Equivalently, R is if every ascending chain of
ideals terminates.

Incidentally, we will later see that the conditions (1) and (2) are
often equivalent in the situations we examine.

The rings OK will have the properties that

(1) Ok is Noetherian.

(2) Ok is 1-dimensional.

(3) Ok has unique factorization for ideals.

(4) Ok is locally a principal ideal domain.

(5) It is possible that Ok is not a unique factorization domain and
that it is not a principal ideal domain.

In fact, any subring B of a number field K that is integral over Z will
be Noetherian and 1-dimensional. That is the Krull-Akizuki theorem
which we will eventually prove.

We used the work “locally” above. Let’s define it.


