Math 531 Tom Tucker
 NOTES FROM CLASS 9/1/04

Main object of study in this class will be rings like $\mathbb{Z}[i] \subset \mathbb{Q}[i]$. These rings are integral extensions (we'll define this ter later) of \mathbb{Z}. We will also work a bit with integral extensions of rings like $K[x]$, the ring of polynomials in x with coefficients in a field K. Let's start with an example, using the ring $\mathbb{Z}[\sqrt{-19}]$
asd asdfasdfa(
We will show that if the ring $\mathbb{Z}[\sqrt{-19}]$ had all the same properties that \mathbb{Z} has, then the equation

$$
x^{2}+19=y^{3}
$$

would have no integer solutions x and y. Suppose we did have such an integer solution $x, y \in \mathbb{Z}$. Then we could write

$$
(x+\sqrt{-19})(x-\sqrt{-19})=y^{3} .
$$

We can show that ($x+$
$\sqrt{-19}$) and ($x-\sqrt{-19}$) have no common prime divisors (recall notion of divisor). Let's recall the idea of primality from the integers. An integer p is prime if $p=u v$ implies that u or v is a unit. We can use this same notion in any ring R : we say that π is prime if $\pi=u v$ implies that u or v is a unit.
Suppose that π divided both $(x+\sqrt{-19})$ and ($x-$
$\sqrt{-19}$). Then π divides the difference of the two which is
$2 \sqrt{-19}$. This would mean that π divides either 2 or
$\sqrt{-19}$. This in turn would mean that either 2 or 19 divides $(x$
$+\sqrt{-19})(x-\sqrt{-19})$, which means that 2 or 19 divides y.
But this is impossible, since 19^{3} cannot divide $x^{2}+19$, nor can 2^{3} divide $x^{2}+1$. The latter follows from looking at the equation $x^{2}+19$ modulo 8 .
Thus, $(x+\sqrt{-19})$ and $(x-\sqrt{-19})$ have no common prime factor.
Thus, we see that if π divides $x^{2}+19$, then π^{3} divides
either $(x+\sqrt{-19})$ or $(x-\sqrt{-19})$, since π cannot
divide both. This follows from factorizing the two numbers as we have
assumed we can.
Hence, we see that $(x+\sqrt{-19})$ must be a
perfect cube in $\mathbb{Z}[\sqrt{-19}]$ (note that $\mathbb{Z}[\sqrt{-19}]$ has no
units except 1 and -1), so we can write

$$
(u+v \sqrt{-19})^{3}=x+\sqrt{-19}
$$

So

$$
x=u^{3}-57 u v^{2}
$$

and

$$
1=3 u^{2} v-19 v^{3}
$$

The latter equation gives $v\left(3 u^{2}-19 v^{2}\right)=1$, so v is 1 or -1 . If $v=1$ we obtain $3 u^{2}-19=1$, so $3 u^{2}=20$. If v $=-1$, weobtain $3 \mathrm{u}^{2}-19=-1$, so $3 u^{2}=18$. Either way, there is no such integer u, so there was no solution to

$$
x^{2}+19=y^{3} .
$$

But there is a solution

$$
18^{2}+19=7^{3} .
$$

So something is wrong. The ring $\mathbb{Z}[\sqrt{-19}]$ is different from \mathbb{Z} in some way.
What went wrong? First of all, $\mathbb{Z}[\sqrt{-19}]$ is not the "right ring". I'll say what this means later. Moreover, even if it were, this "right ring" might not have all the same properties as \mathbb{Z}.
Let's do a quick outline of the questions we'll try to answer in this course

- Given a finite extension K of \mathbb{Q}, what is a good subring to work with, where "good" means most like \mathbb{Z} ? Example: $\mathbb{Z}[i]$ in $\mathbb{Q}(i)$ is very much like \mathbb{Z} (see problem set).
- What properties will this good subring have? Is it a principal ideal domain? What does the group of units look like? How do the
primes from \mathbb{Z} split up in this ring? Example: in $\mathbb{Z}[\sqrt{5}]$, $5=\sqrt{5} \sqrt{5}$. What does 7 look like in this ring?
- What can we say about the units in the subring of K that we work with?

Example 1.1. Do $\mathbb{Z}[i]$.
Let's start answering the first question. A partial answer is that the good subring B will be finitely generated as a module over \mathbb{Z}. This means that all of the elements in it will be integral over \mathbb{Z}.

For the rest of the class A and B are rings Recall that an integral equation over A is an equation

$$
x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0 .
$$

Definition 1.2. Let $A \subset B$. An element $b \in B$
is said to be integral over A if b satisfies an equation of the form

$$
b^{n}+a_{n-1} b^{n-1}+\cdots+a_{1} b+a_{0}=0,
$$

where the $a_{i} \in A$ (i.e., if it satisfies an integral equation over A).

