Math 531 Tom Tucker

NOTES FROM CLASS 12/10
We will show that if L is an algebraic extension of a field K_{v} that is complete with respect to an absolute value coming from a discrete valuation v, that there is in fact only one way of extending $|\cdot|_{v}$ to an absolute value on L. First, we'll need a definition of a metric on a vector space.
Definition 43.1. Let K be a field with an absolute value $|\cdot|_{v}$ and let W be a vector space over K A v-metric $\|\cdot\|$ on W is function $\|\cdot\|: W \longrightarrow \mathbb{R}$ such that
(1) $\|x\| \geq 0$ for every $x \in L$ and $|x|=0$ if and only if $x=0$.
(2) $\|a x\|=|a|\|x\|$ for every $a \in K$ and $x \in W$.
(3) (Triangle inequality) $\|x+y\| \leq\|x\|+\|y\|$ for any $x, y \in W$

Definition 43.2. We'll say that two metrics $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are equivalent if there exist constants C_{1} and C_{2} such that

$$
C_{1}\|x\|_{1} \leq\|x\|_{2} \leq C_{2}\|x\|_{1}
$$

for every $x \in W$.
When W has finite dimension n with basis e_{1}, \ldots, e_{n}, we define

$$
\left\|x_{1} e_{1}+\ldots x_{n} e_{n}\right\|_{\text {sup }}=\max _{i}\left(\left|x_{i}\right|\right) .
$$

Then $\|\cdot\|_{\text {sup }}$ is clearly a metric. Moreover, for any Cauchy sequence in W, the coordinate x_{i} converge with respect to $|\cdot|_{v}$. Thus, it is clear that when K is complete with respect to v, W is complete with respect to $\|\cdot\|_{\text {sup }}$.
Lemma 43.3. Let K_{v} be complete with respect to an absolute value $|\cdot|_{v}$ and let W be a finite dimensional vector space. Then any v metric $\|\cdot\|$ on W is equivalent to the metric $\|\cdot\|_{\text {sup }}$.
Proof. It is easy to see that by the triangle inequality, we have

$$
\left\|x_{1} e_{1}+\ldots x_{n} e_{n}\right\| \leq\left\|x_{1} e_{1}\right\|+\ldots\left\|x_{n} e_{n}\right\| \leq n \max _{i}\left(\left\|e_{i}\right\|\right) \max _{i}\left(\left|x_{i}\right|\right) .
$$

Now, we need to show there is a C_{1} such that $\|y\| \geq C_{1}\|y\|_{\text {sup }}$. Note that this is clearly true when $n=1$, since in this case $\|y\|=\|y\|_{\text {sup }}$ for any y. Thus, we can proceed by induction on n. Suppose to the contrary this were not true - then for any i there would be some y_{i} such that

$$
\left\|y_{i}\right\| \leq \frac{1}{i}\left\|y_{i}\right\|_{\text {sup }}
$$

Dividing through by $\left\|y_{i}\right\|_{\text {sup }}$, we can assume that $\left\|y_{i}\right\|=1$. After reordering the e_{j} and throwing some of the y_{i}, we can assume that
the coefficient of e_{1} in the expansion of y_{i} with respect to the basis e_{1}, \ldots, e_{n} is 1 . Then $c_{i}=y_{i}-e_{1}$ is in an $n-1$ dimensional vector space on which $\|\cdot\|$ is equivalent to $\|\cdot\|_{\text {sup }}$. For any i, j, we see that

$$
\left\|c_{i}-c_{j}\right\|=\left\|y_{i}-y_{j}\right\| \leq \frac{1}{i}+\frac{1}{j}
$$

so the c_{j} form a Cauchy sequence with respect to $\|\cdot\|$. Since $\|\cdot\|$ is equivalent to $\|\cdot\|_{\text {sup }}$ on the c_{i}, this means that the $\operatorname{limit} \lim _{i} c_{i}$ exists and is in the space generated by $e_{2}, \ldots e_{n}$. Letting $c^{*}=\lim _{i} c_{i}$, we see that

$$
\left\|c^{*}+e_{1}\right\|=\lim _{i}\left\|c_{i}+e_{1}\right\| \lim _{i}\left\|y_{i}\right\|=0
$$

but $c^{*}+e_{1} \neq 0$, a contradiction of part (i) of the definition of a metric, so we have a contradiction.
Theorem 43.4. Let K_{v} be complete with respect to an absolute value $|\cdot|_{v}$ coming from the discrete valuation v. Let L be a finite separable extension of K_{v}. Then $|\cdot|_{v}$ extends uniquely to a absolute value $|\cdot|_{w}$ on L. Moreover, L is complete with respect to $|\cdot|_{w}$.

Proof. We know that the prime lying over the maximal ideal in B_{v} are in one-to-one correspondence with absolute values $\|\cdot\|_{w}$ extending $\|\cdot\|_{v}$. Any absolute value on L as a field is also a metric on L as a K-vector space. Thus, any two absolute values on L extending v are equivalent as metrics. On the other hand, if $\mathcal{Q}_{i} \neq \mathcal{Q}_{j}$ are primes in C_{v} lying over B_{v}, then there exists an element $\pi \in \mathcal{Q}_{i}$ that isn't in \mathcal{Q}_{j}. If $\|\left.\cdot\right|_{w}$ and $\|\left.\cdot\right|_{w^{\prime}}$ are the absolute values coming from \mathcal{Q}_{i} and \mathcal{Q}_{j} respectively, we see that for any $\epsilon>0$, there is a suitably large power π^{n} of π for which $\left\|\pi^{n}\right\|_{w}<\epsilon$; we also know that $\| \pi^{n}{ }_{-} w^{\prime}=1$, so $\|\left.\cdot\right|_{w}$ and $\|\cdot\|_{w^{\prime}}$ are not equivalent.

Since $\|\cdot\|_{w}$ is equivalent to the sup norm defined above and L is complete with respect to the sup norm, L must be complete with respect to $\|\cdot\|_{w}$, so we are done.

Let K be a field with a discrete valuation on v; let B be the corresponding discrete valuation ring in K and let \mathcal{P} be the maximal ideal in B. Let L be a finite separable extension of K; let C be the algebraic closure of B in L. We write

$$
C \mathcal{P}=\mathcal{Q}_{1}^{e_{1}} \cdots \mathcal{Q}_{m}^{e_{m}} .
$$

Let $f_{i}=\left[\mathcal{Q}_{i}: \mathcal{P}_{1}\right]$. Let $|\cdot|_{w}$ be the absolute value on L extending v that corresponds to \mathcal{Q}_{i}.
Proposition 43.5. We have $\left[L_{w}: K_{v}\right]=e_{i} f_{i}$. This is called the local degree at w.

Proof. Let $B_{v}, C_{w}, \mathcal{P}_{v}$, and \mathcal{Q}_{v} denote the completions of B, C, \mathcal{P}, and \mathcal{Q}_{i}, respectively. Since C_{w} is a DVR, the only maximal ideal in C_{w} is \mathcal{Q}_{w}. Thus, C_{w} contains $C_{\mathcal{Q}_{i}}$, Since

$$
C_{\mathcal{Q}_{i}} \mathcal{P}=\mathcal{Q}_{i}^{e_{i}}
$$

we have

$$
C_{w} \mathcal{P}_{v}=\mathcal{Q}_{w}^{e_{i}}
$$

We also have $C_{w} / \mathcal{Q}_{w} \cong C / \mathbb{Q}_{i}$ and $B_{v} / \mathcal{P}_{v} \cong B / \mathcal{P}$, so

$$
f_{i}=\left[C_{w} / \mathcal{Q}_{w}: B_{v} / \mathcal{P}_{v}\right] .
$$

Thus,

$$
\left[L_{w}: \mathbb{Q}_{v}\right]=e_{i} f_{i}
$$

