Math 531 Tom Tucker NOTES FROM CLASS 12/10

We will show that if L is an algebraic extension of a field K_v that is complete with respect to an absolute value coming from a discrete valuation v, that there is in fact only *one* way of extending $|\cdot|_v$ to an absolute value on L. First, we'll need a definition of a metric on a vector space.

Definition 43.1. Let K be a field with an absolute value $|\cdot|_v$ and let W be a vector space over K A *v*-metric $||\cdot||$ on W is function $||\cdot||: W \longrightarrow \mathbb{R}$ such that

(1) $||x|| \ge 0$ for every $x \in L$ and |x| = 0 if and only if x = 0.

(2) ||ax|| = |a|||x|| for every $a \in K$ and $x \in W$.

(3) (Triangle inequality) $||x + y|| \le ||x|| + ||y||$ for any $x, y \in W$

Definition 43.2. We'll say that two metrics $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent if there exist constants C_1 and C_2 such that

$$C_1 \|x\|_1 \le \|x\|_2 \le C_2 \|x\|_1$$

for every $x \in W$.

When W has finite dimension n with basis e_1, \ldots, e_n , we define

 $||x_1e_1 + \dots x_ne_n||_{sup} = \max_i (|x_i|).$

Then $\|\cdot\|_{sup}$ is clearly a metric. Moreover, for any Cauchy sequence in W, the coordinate x_i converge with respect to $|\cdot|_v$. Thus, it is clear that when K is complete with respect to v, W is complete with respect to $\|\cdot\|_{sup}$.

Lemma 43.3. Let K_v be complete with respect to an absolute value $|\cdot|_v$ and let W be a finite dimensional vector space. Then any v metric $\|\cdot\|$ on W is equivalent to the metric $\|\cdot\|_{sup}$.

Proof. It is easy to see that by the triangle inequality, we have

$$||x_1e_1 + \dots x_ne_n|| \le ||x_1e_1|| + \dots ||x_ne_n|| \le n \max_i (||e_i||) \max_i (|x_i|).$$

Now, we need to show there is a C_1 such that $||y|| \ge C_1 ||y||_{sup}$. Note that this is clearly true when n = 1, since in this case $||y|| = ||y||_{sup}$ for any y. Thus, we can proceed by induction on n. Suppose to the contrary this were not true - then for any i there would be some y_i such that

$$\|y_i\| \le \frac{1}{i} \|y_i\|_{sup}.$$

Dividing through by $||y_i||_{sup}$, we can assume that $||y_i|| = 1$. After reordering the e_j and throwing some of the y_i , we can assume that

the coefficient of e_1 in the expansion of y_i with respect to the basis e_1, \ldots, e_n is 1. Then $c_i = y_i - e_1$ is in an n-1 dimensional vector space on which $\|\cdot\|$ is equivalent to $\|\cdot\|_{sup}$. For any i, j, we see that

$$||c_i - c_j|| = ||y_i - y_j|| \le \frac{1}{i} + \frac{1}{j},$$

so the c_j form a Cauchy sequence with respect to $\|\cdot\|$. Since $\|\cdot\|$ is equivalent to $\|\cdot\|_{sup}$ on the c_i , this means that the limit $\lim_i c_i$ exists and is in the space generated by $e_2, \ldots e_n$. Letting $c^* = \lim_i c_i$, we see that

$$|c^* + e_1|| = \lim_i ||c_i + e_1|| \lim_i ||y_i|| = 0$$

but $c^* + e_1 \neq 0$, a contradiction of part (i) of the definition of a metric, so we have a contradiction.

Theorem 43.4. Let K_v be complete with respect to an absolute value $|\cdot|_v$ coming from the discrete valuation v. Let L be a finite separable extension of K_v . Then $|\cdot|_v$ extends uniquely to a absolute value $|\cdot|_w$ on L. Moreover, L is complete with respect to $|\cdot|_w$.

Proof. We know that the prime lying over the maximal ideal in B_v are in one-to-one correspondence with absolute values $\|\cdot\|_w$ extending $\|\cdot\|_v$. Any absolute value on L as a field is also a metric on L as a K-vector space. Thus, any two absolute values on L extending v are equivalent as metrics. On the other hand, if $\mathcal{Q}_i \neq \mathcal{Q}_j$ are primes in C_v lying over B_v , then there exists an element $\pi \in \mathcal{Q}_i$ that isn't in \mathcal{Q}_j . If $\|\cdot\|_w$ and $\|\cdot\|_{w'}$ are the absolute values coming from \mathcal{Q}_i and \mathcal{Q}_j respectively, we see that for any $\epsilon > 0$, there is a suitably large power π^n of π for which $\|\pi^n\|_w < \epsilon$; we also know that $\|\pi^n w' = 1$, so $\|\cdot\|_w$ and $\|\cdot\|_{w'}$ are not equivalent.

Since $\|\cdot\|_w$ is equivalent to the sup norm defined above and L is complete with respect to the sup norm, L must be complete with respect to $\|\cdot\|_w$, so we are done.

Let K be a field with a discrete valuation on v; let B be the corresponding discrete valuation ring in K and let \mathcal{P} be the maximal ideal in B. Let L be a finite separable extension of K; let C be the algebraic closure of B in L. We write

$$C\mathcal{P} = \mathcal{Q}_1^{e_1} \cdots \mathcal{Q}_m^{e_m}.$$

Let $f_i = [\mathcal{Q}_i : \mathcal{P}_1]$. Let $|\cdot|_w$ be the absolute value on L extending v that corresponds to \mathcal{Q}_i .

Proposition 43.5. We have $[L_w : K_v] = e_i f_i$. This is called the local degree at w.

Proof. Let B_v, C_w, \mathcal{P}_v , and \mathcal{Q}_v denote the completions of B, C, \mathcal{P} , and \mathcal{Q}_i , respectively. Since C_w is a DVR, the only maximal ideal in C_w is \mathcal{Q}_w . Thus, C_w contains $C_{\mathcal{Q}_i}$, Since

$$C_{\mathcal{Q}_i}\mathcal{P}=\mathcal{Q}_i^{e_i},$$

we have

 $C_w \mathcal{P}_v = \mathcal{Q}_w^{e_i}.$ We also have $C_w / \mathcal{Q}_w \cong C / \mathbb{Q}_i$ and $B_v / \mathcal{P}_v \cong B / \mathcal{P}$, so $f_i = [C_w / \mathcal{Q}_w : B_v / \mathcal{P}_v].$

Thus,

$$[L_w:\mathbb{Q}_v]=e_if_i.$$