Math 531 Tom Tucker NOTES FROM CLASS 12/08

Lemma 42.1. Let $|\cdot|$ be an absolute value on a field K such that |1| = 1. Then $|\cdot|$ is nonarchimedean $\Leftrightarrow |n \cdot 1| \leq 1$ for every integer n.

Proof. The \Rightarrow direction follows immediately from the ultrametric inequality plus the fact that $n \cdot 1 = 1 + ... 1$. To prove the \Leftarrow direction, let $x, y \in K$. We will show that $|x + y| \leq \max(|x|, |y|)$ assuming that $|n \cdot 1| \leq 1$ for every integer n. We may assume WLOG that |x| > |y|. Thus expanding $(x + y)^n$ out for an integer n, we have

$$\begin{aligned} |x+y|^n &\leq |\sum_{i=0}^n \left(\frac{n}{i}\right)||x|^i|y|^{n-i} \\ &\leq \sum_{i=0}^n |x|^n \\ &\leq N|x|^n \end{aligned}$$

Taking *n*-th roots gives $|x+y| \leq \sqrt[n]{n}|x|$ for any *n*, so we must have

$$|x+y| \le (\lim_{n \to \infty} \sqrt[n]{n})|x| = |x|.$$

Proposition 42.2. Let v be a discrete valuation on a field K and let L be a finite separable field extension of K. Let B the set of x in K with $v(x) \ge 0$ and let C be the integral closure of B in L. Then the absolute values $|\cdot|_w$ on L extending $|\cdot|_v$ are in one-to-one correspondence with the primes \mathcal{P} in \mathcal{O}_L lying over the maximal ideal \mathcal{M} of B.

Proof. Let \mathcal{Q}_i be a prime lying above \mathcal{M} in C. Since C is Dedekind, the localization of C is a DVR and there is a discrete valuation $w : L \longrightarrow \mathbb{Z} \cup \infty$ such that $C_{\mathcal{Q}_i}$ is the set of all $x \in L$ for which $v(x) \geq 0$. The valuation $|x|_w = e^{-w(x)}$ does not, however, restrict to v. To see this let γ be a generator for \mathcal{Q}_i in C (since C has finitely many primes, it is a PID), and let π be a generator for \mathcal{P} in B. Since

$$\mathcal{P}C = \mathcal{Q}_1^{e_1} \cdots \mathcal{Q}_i^{e_i} \cdots \mathcal{Q}_m^{e_m}$$

we can write $\pi = \gamma^{e_i} u$ for u unit in C_{Q_i} . Thus $w(\pi) = e_i$. To compensate for this, we let

$$|x|_w = e^{-\frac{1}{e_i}w(x)}$$

for $x \in L$ and obtain an absolute value on L extending $|\cdot|_v$. It is clear that different \mathcal{Q}_i give rise to different $|\cdot|_w$.

To see that these are the only absolute values on L extending $|\cdot|_v$, we first observe that from the lemma above, we know that any absolute value $|\cdot|$ extending $|\cdot|_v$ must be nonarchimedean. Thus, the set of all C_v of all $x \in L$ such that $w(x) \ge 0$ forms a ring. If $x \in L$ is integral, then writing

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{0} = 0$$

with $|a_{i}|_{w} = |a_{i}|_{w} \le 1$, we see that $w(x) \ge 0$, since otherwise
 $|x^{n} + a_{n-1}x^{n-1} + \dots + a_{0}|_{w} = w(x)^{n} > 1 > 0.$

Now, the prime \mathcal{P} of all $x \in C$ such that $|x|_w < 1$ must form a prime ideal of C and cannot be the 0-ideal since it must contain \mathcal{M} . Thus, it must be one of the \mathcal{Q}_i . It follows that for all $x \in C_{\mathcal{Q}_i}$ we have $|x|_w \leq 1$ and that for any unit $u \in C_{\mathcal{Q}_i}$, we have $|u|_w = 1$. Let π be a generator for \mathcal{Q}_i . Since any element of $x \in L$ can be written as $x = u\pi^n$, $|\cdot|_w$ is determined by its value on π , which was determined above. Thus $|\cdot|_w$ agrees with the absolute value coming from \mathcal{Q}_i constructed above. \Box