Math 531 Tom Tucker

NOTES FROM CLASS 12/08
Lemma 42.1. Let $|\cdot|$ be an absolute value on a field K such that $|1|=1$. Then $|\cdot|$ is nonarchimedean $\Leftrightarrow|n \cdot 1| \leq 1$ for every integer n.
Proof. The \Rightarrow direction follows immediately from the ultrametric inequality plus the fact that $n \cdot 1=1+\ldots 1$. To prove the \Leftarrow direction, let $x, y \in K$. We will show that $|x+y| \leq \max (|x|,|y|)$ assuming that $|n \cdot 1| \leq 1$ for every integer n. We may assume WLOG that $|x|>|y|$. Thus expanding $(x+y)^{n}$ out for an integer n, we have

$$
\begin{aligned}
|x+y|^{n} & \leq\left|\sum_{i=0}^{n}\left(\frac{n}{i}\right)\right||x|^{i}|y|^{n-i} \\
& \leq \sum_{i=0}^{n}|x|^{n} \\
& \leq N|x|^{n}
\end{aligned}
$$

Taking n-th roots gives $|x+y| \leq \sqrt[n]{n}|x|$ for any n, so we must have

$$
|x+y| \leq\left(\lim _{n \rightarrow \infty} \sqrt[n]{n}\right)|x|=|x|
$$

Proposition 42.2. Let v be a discrete valuation on a field K and let L be a finite separable field extension of K. Let B the set of x in K with $v(x) \geq 0$ and let C be the integral closure of B in L. Then the absolute values $|\cdot|_{w}$ on L extending $|\cdot|_{v}$ are in one-to-one correspondence with the primes \mathcal{P} in \mathcal{O}_{L} lying over the maximal ideal \mathcal{M} of B.

Proof. Let \mathcal{Q}_{i} be a prime lying above \mathcal{M} in C. Since C is Dedekind, the localization of C is a DVR and there is a discrete valuation w : $L \longrightarrow \mathbb{Z} \cup \infty$ such that $C_{\mathcal{Q}_{i}}$ is the set of all $x \in L$ for which $v(x) \geq 0$. The valuation $|x|_{w}=e^{-w(x)}$ does not, however, restrict to v. To see this let γ be a generator for \mathcal{Q}_{i} in C (since C has finitely many primes, it is a PID), and let π be a generator for \mathcal{P} in B. Since

$$
\mathcal{P} C=\mathcal{Q}_{1}^{e_{1}} \cdots \mathcal{Q}_{i}^{e_{i}} \cdots \mathcal{Q}_{m}^{e_{m}}
$$

we can write $\pi=\gamma^{e_{i}} u$ for u unit in $C_{\mathcal{Q}_{i}}$. Thus $w(\pi)=e_{i}$. To compensate for this, we let

$$
|x|_{w}=e^{-\frac{1}{e_{i}} w(x)}
$$

for $x \in L$ and obtain an absolute value on L extending $|\cdot|_{v}$. It is clear that different \mathcal{Q}_{i} give rise to different $|\cdot|_{w}$.

To see that these are the only absolute values on L extending $|\cdot|_{v}$, we first observe that from the lemma above, we know that any absolute value $|\cdot|$ extending $|\cdot|_{v}$ must be nonarchimedean. Thus, the set of all C_{v} of all $x \in L$ such that $w(x) \geq 0$ forms a ring. If $x \in L$ is integral, then writing

$$
x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}=0
$$

with $\left|a_{i}\right|_{w}=\left|a_{i}\right|_{w} \leq 1$, we see that $w(x) \geq 0$, since otherwise

$$
\left|x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}\right|_{w}=w(x)^{n}>1>0 .
$$

Now, the prime \mathcal{P} of all $x \in C$ such that $|x|_{w}<1$ must form a prime ideal of C and cannot be the 0 -ideal since it must contain \mathcal{M}. Thus, it must be one of the \mathcal{Q}_{i}. It follows that for all $x \in C_{\mathcal{Q}_{i}}$ we have $|x|_{w} \leq 1$ and that for any unit $u \in C_{\mathcal{Q}_{i}}$, we have $|u|_{w}=1$. Let π be a generator for \mathcal{Q}_{i}. Since any element of $x \in L$ can be written as $x=u \pi^{n},|\cdot|_{w}$ is determined by its value on π, which was determined above. Thus $|\cdot|_{w}$ agrees with the absolute value coming from \mathcal{Q}_{i} constructed above.

