
Math 531 Tom Tucker
NOTES FROM CLASS 12/06

Throughout this class, we set the following notation. Let K be a
field with a discrete valuation v and let K̂ be the completion of K with
respect to | · |v where

|x|v = e−v(x).

By convention v(0) = ∞. We define Bv to be the set of x ∈ K̂ with
v(x) ≥ 0 and let Mv be the maximal ideal in Bv.

Proposition 41.1. With notation as above, let us denote as B the
set of all x ∈ K such that v(x) ≥ 0 and let us denote as M the

maximal ideal of B. For any n ≥ 1, the inclusion K ↪→ K̂ induces an
isomorphism

B/Mt ∼= Bv/Mt
v.

Proof. Let (ai)
∞
i=1 be a Cauchy sequence of K. Since Mt

v consists of
elements x for which v(x) ≥ n it is clear that the kernel of the natural
map

φ : B/Mt −→ Bv/Mt
v

consists of elements in B for which v(x) ≥ t. These are precisely the
elements in Mt, so the map above is injective. Now, we will show that
it is surjective. Take any Cauchy sequence (ai)

∞
i=1. Let ε = e−t. Then

there exists Nε ∈ Z such that for all m, n ≥ Nε, we have |am−an|v < ε.
Letting x = aNε , we see that for all

|x− an|v < e−t

so |x− (ai)
∞
i=1| < e−t. Thus v(x− (ai)

∞
i=1) ≥ t, so

x ≡ (ai)
∞
i=1 (mod Mt

v)

and φ(x) = (ai)
∞
i=1. �

For discrete valuations v on field K, we have an explicit way of writ-
ing out an element of K̂. This is analogous to the decimal expansion
for a real number. Here is set-up: let Bv be the set of all x ∈ K
for which v(x) ≥ 0. Then Bv is a local principal ideal domain with
maximal ideal Mv generated by some π ∈ Bv. Let U be complete set
of residue classes for Bv modulo Mv. When Bv is Z(p), we can take
these to be 0, 1, . . . , p− 1 for example; in general, we just take inverse
images of all the elements in Bv/Mv. Then any x ∈ K̂ has a unique
representation as a Laurent series

(1) x =
∞∑

i=v(x)

uiπ
i

1



2

where ui ∈ U , ui = 0 for u < v(a), and π generates Mv. To see
this, we first note that such a sum does indeed give rise to a Cauchy

sequence in K since (
j∑

i=−v(x)

uiπ
i)j is a Cauchy sequence since | · | is

nonarchimedean, i.e. it is easy to see that for any m,n > N , we have

|
n∑

i=v(x)

uiπ
i −

m∑
i=v(x)

uiπ
i| < e−N

since all the terms cancel out with up to πN . To get an expansion of
the form (1) for a nonzero x ∈ K̂ (the 0 series gives us 0 of course), we
proceed as follows. Let L = v(x). Then π−Lx is a unit and there is a
unit element uL of U such that

π−Lx ≡ uL (mod Mv).

It follows that

v(x− uLπL) = v(πL(π−Lx− uL)) ≥ L + 1.

Applying this process to x − uLπL gives us the term uL+1 and so on
recursively.

Most of the next few pages is things you’ve seen before in your p-adic
analysis class. I include them for completeness.

Lemma 41.2. Let A be any ring and let I be an ideal of A. Suppose
that f(x), g(x) ∈ A[X] are monic polynomials that generate all of A[X].
Let t ∈ IR[X] have degree less than deg f + deg g. Then we can write

af + bg = t

for polynomials a, b ∈ IA[x] such that deg a < deg g and deg b < deg f .

Proof. For any v ∈ A[X], we have

(a + vg)f = (b− vf)g = 1

Since f is monic, for any z ∈ IA[X], there is some v ∈ IA[X] for which

z = vf + r

with deg r < deg f . This is easily proved by induction on the degree
of z. If z has degree less than f , then we’re done. If deg z ≥ deg f ,
then writing the lead term of z as α ∈ I we see that z − Xdeg z−deg f

has degree less than deg z and is in IR[X].
Appplying this when z = b, gives

deg(b− vf) < deg f.
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Counting degrees shows that

deg(a + vg) < deg g

and we are done. �

Theorem 41.3. Let R be any ring, let I be an ideal of R and let
h(X) ∈ R[X] be monic. Suppose that there exist monic polynomials
f0(X), g0(X) ∈ R[X] such that

h(X) ≡ f0(X)g0(X) (mod I)

and such that (I, f0, g0) generate R[X]. Then there exist monic poly-
nomials f(X), g(X) ∈ R[X] such that

h(X) ≡ f(X)g(X) (mod I2),

that (I2, f, g) generate R[X] and that f ≡ f0 (mod I) and g ≡ g0

(mod I).

Proof. Since

h(X) ≡ f0(X)g0(X) (mod I),

we can write

h(X) = f0(X)g0(X) + t

for some r(X) ∈ R[x] and some t ∈ I with deg t < deg f +deg f . Since
R[X] is generated by I along with f0 and g0, it is also generated by I2

along with f0 and g0, so applying the theorem above with A = R/I2,
we can write

af0 + bg0 = t + v

for deg a < deg g, deg b < deg f , a, b ∈ IR[X], and and v ∈ I2R[X].
Letting f = f0 + b and g = g0 + a, we have

fg = (f0 + b)(g0 + a)

= f0g0 + (af0 + bf0) + ab

≡ f0g0 + t + v (mod I2)

≡ h(X) (mod I2).

Since f and g are congruent to f0 and g0 modulo I, we see that (f, g, I)
generates R[X], which means that (f, g, I2) generates R[X], as desired.

�

Corollary 41.4 (Hensel’s Lemma). Let K̂ and let Bv be as usual. Let
h(X) ∈ Bv[X]. Suppose that

h(X) ≡ f(X) g(X) (mod Mv)
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for some coprime f(X) and g(X) in R/Mv[X]. Then there exist f, g ∈
Bv[X] such that

h(X) = f(X)g(X)

and
f(X) ≡ f(X) (mod Mv)

and
g(X) ≡ g(X) (mod Mv).

Proof. Choose f(x) and g(x) such that

f(x) ≡ f(X) (mod Mv)

and
g(x) ≡ g(X) (mod Mv).

Applying the theorem above to f(x) and g(x) with I = Mv, we obtain
f1, g2 such that

h(X) ≡ f1(X)g1(X) (mod M2
v)

and f1(X) and g1(X) generate R[X] modulo M2
v. We can apply the

above theorem to f1(X) and g1(X) with I = Mv and so on, thus
obtaining fn, fn−1, gn, gn−1 with

fn ≡ fn−1 (mod M2n−1

v )

and
gn ≡ gn−1 (mod M2n−1

v )

and
h(X) ≡ fn(X)gn(X) (mod M2n

v ).

This gives a Cauchy sequence of polynomials (i.e. the coefficients of the
polynomials form a Cauchy sequence) (fn)∞n=1 and (gn)∞n=1 with limits
f and g, respectively, in Bv[X]. Furthermore, we have

h(X)−f(X)g(X) ≡ h(X)−fn(X)gn(X) (mod M2n

v ) ≡ 0 (mod M2n

v )

for any integer n. Thus h(X)− f(X)g(X) = 0, so h(X) = f(X)g(X).
�

Remark 41.5. If h is monic, then we can assume that f and g are
monic after multiplying by a suitable unit. In this case, we must have
deg f = deg f and deg g = deg g

Corollary 41.6. Let h(X) be a monic polynomial in Bv[X] such that
there exists α ∈ Bv for which h(α) ≡ 0 (mod Mv) and h′(α) 6≡ 0
(mod Mv). Then there exist a unique β ∈ Bv such that

h(β) = 0

and β ≡ α (mod Mv).
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Proof. Let h̄ denote h (mod M). IF h̄ has a root ᾱ modulo M and
h′(α) 6≡ 0 (mod M). Then we can write

h̄ ≡ (X − ᾱ)g(X)

for some g(X) that is prime to (X − ᾱ). By the remark above, this
gives rise to a factorization h = f(X)g(X) where

g ≡ g(X) (mod M)

and

f ≡ (X − ᾱ) (mod M)

and f and g are monic with degrees equal to 1 and deg g(X), respec-
tively. Thus, f must be equal to (X − β) for some β ≡ α (mod M).
To see that β must be unique, we note that if β were not unique,
then α would be a multiple root of h̄ and we would have h′(α) ≡ 0
(mod M). �

Some of the results above are reminiscent of the result we prove
about how primes split in extensions. Now, we will prove a result
about extensions of complete fields. From now on, we’ll denote com-
plete fields as Kv rather than as K̂. We will begin by showing that
a nonarchimedean valuation can always be extended. First, a word
on archimedean absolute values for number fields. We know that Q
completed at the archimedean absolute value is equal to R. Suppose
that we have a finite extension L of Q and we want to know how we
extend the archimedean valuation on Q to L. Let w be a valuation on
L extending the usual absolute value on Q. Thus Lw must contain R.
We can write

L ∼= Q[X]/f(X)

for some monic polynomial f(X) irreducible over Q. Let α ∈ L have the
property that f is the minimal monic for α over Q. Since L = Q(α),
we must have Lw = R(i(α)) for some embedding of i of α into the
algebraic closure of R (i.e. C). Now, i(α) must satisfy some polynomial
irreducible over R that divides f(X). So to figure out what Lw might
be, we simply look at how f(X) splits into irreducible factors over R.
This is the same thing as finding a maximal ideal in

R[X]/f(X) ∼= L⊕Q R,

so we can see all the completions Lw in easy manner. By exactly the
same reasoning, we can see all the completions of L with respect to
absolute values extending the p-adic absolute values by taking looking
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at the irreducible factors of f(X) over Qp, other words, finding the
maximal ideals of

Qp[X]/f(X).

Since any factor of f modulo p lifts to a factor of f in Qp, this set of
maximal ideals looks suspiciously like the primes in OL lying over p.
We will now see that is indeed exactly the case.

Proposition 41.7. Let v be a discrete valuation on a field K and let L
be a finite separable field extension of K. Let B the set of x in K with
v(x) ≥ 0 and let C be the integral closure of B in L. Then the absolute
values | · |w on L extending | · |v are in one-to-one correspondence with
the primes P in OL lying over the maximal ideal M of B.

We will prove this next time.


