Math 531 Tom Tucker

NOTES FROM CLASS 12/06
Throughout this class, we set the following notation. Let K be a field with a discrete valuation v and let \hat{K} be the completion of K with respect to $|\cdot|_{v}$ where

$$
|x|_{v}=e^{-v(x)}
$$

By convention $v(0)=\infty$. We define B_{v} to be the set of $x \in \hat{K}$ with $v(x) \geq 0$ and let \mathcal{M}_{v} be the maximal ideal in B_{v}.

Proposition 41.1. With notation as above, let us denote as B the set of all $x \in K$ such that $v(x) \geq 0$ and let us denote as \mathcal{M} the maximal ideal of B. For any $n \geq 1$, the inclusion $K \hookrightarrow \hat{K}$ induces an isomorphism

$$
B / \mathcal{M}^{t} \cong B_{v} / \mathcal{M}_{v}^{t}
$$

Proof. Let $\left(a_{i}\right)_{i=1}^{\infty}$ be a Cauchy sequence of K. Since \mathcal{M}_{v}^{t} consists of elements x for which $v(x) \geq n$ it is clear that the kernel of the natural map

$$
\phi: B / \mathcal{M}^{t} \longrightarrow B_{v} / \mathcal{M}_{v}^{t}
$$

consists of elements in B for which $v(x) \geq t$. These are precisely the elements in \mathcal{M}^{t}, so the map above is injective. Now, we will show that it is surjective. Take any Cauchy sequence $\left(a_{i}\right)_{i=1}^{\infty}$. Let $\epsilon=e^{-t}$. Then there exists $N_{\epsilon} \in \mathbb{Z}$ such that for all $m, n \geq N_{\epsilon}$, we have $\left|a_{m}-a_{n}\right|_{v}<\epsilon$. Letting $x=a_{N_{\epsilon}}$, we see that for all

$$
\left|x-a_{n}\right|_{v}<e^{-t}
$$

so $\left|x-\left(a_{i}\right)_{i=1}^{\infty}\right|<e^{-t}$. Thus $v\left(x-\left(a_{i}\right)_{i=1}^{\infty}\right) \geq t$, so

$$
x \equiv\left(a_{i}\right)_{i=1}^{\infty} \quad\left(\bmod \mathcal{M}_{v}^{t}\right)
$$

and $\phi(x)=\left(a_{i}\right)_{i=1}^{\infty}$.
For discrete valuations v on field K, we have an explicit way of writing out an element of \hat{K}. This is analogous to the decimal expansion for a real number. Here is set-up: let B_{v} be the set of all $x \in K$ for which $v(x) \geq 0$. Then B_{v} is a local principal ideal domain with maximal ideal \mathcal{M}_{v} generated by some $\pi \in B_{v}$. Let \mathcal{U} be complete set of residue classes for B_{v} modulo \mathcal{M}_{v}. When B_{v} is $\mathbb{Z}_{(p)}$, we can take these to be $0,1, \ldots, p-1$ for example; in general, we just take inverse images of all the elements in B_{v} / \mathcal{M}_{v}. Then any $x \in \hat{K}$ has a unique representation as a Laurent series

$$
\begin{equation*}
x=\sum_{i=v(x)}^{\infty} u_{i} \pi^{i} \tag{1}
\end{equation*}
$$

where $u_{i} \in \mathcal{U}, u_{i}=0$ for $u<v(a)$, and π generates \mathcal{M}_{v}. To see this, we first note that such a sum does indeed give rise to a Cauchy sequence in K since $\left(\sum_{i=-v(x)}^{j} u_{i} \pi^{i}\right)_{j}$ is a Cauchy sequence since $|\cdot|$ is nonarchimedean, i.e. it is easy to see that for any $m, n>N$, we have

$$
\left|\sum_{i=v(x)}^{n} u_{i} \pi^{i}-\sum_{i=v(x)}^{m} u_{i} \pi^{i}\right|<e^{-N}
$$

since all the terms cancel out with up to π^{N}. To get an expansion of the form (1) for a nonzero $x \in \hat{K}$ (the 0 series gives us 0 of course), we proceed as follows. Let $L=v(x)$. Then $\pi^{-L} x$ is a unit and there is a unit element u_{L} of \mathcal{U} such that

$$
\pi^{-L} x \equiv u_{L} \quad\left(\bmod \mathcal{M}_{v}\right)
$$

It follows that

$$
v\left(x-u_{L} \pi^{L}\right)=v\left(\pi^{L}\left(\pi^{-L} x-u_{L}\right)\right) \geq L+1 .
$$

Applying this process to $x-u_{L} \pi^{L}$ gives us the term u_{L+1} and so on recursively.

Most of the next few pages is things you've seen before in your p-adic analysis class. I include them for completeness.

Lemma 41.2. Let A be any ring and let I be an ideal of A. Suppose that $f(x), g(x) \in A[X]$ are monic polynomials that generate all of $A[X]$. Let $t \in I R[X]$ have degree less than $\operatorname{deg} f+\operatorname{deg} g$. Then we can write

$$
a f+b g=t
$$

for polynomials $a, b \in I A[x]$ such that $\operatorname{deg} a<\operatorname{deg} g$ and $\operatorname{deg} b<\operatorname{deg} f$.
Proof. For any $v \in A[X]$, we have

$$
(a+v g) f=(b-v f) g=1
$$

Since f is monic, for any $z \in I A[X]$, there is some $v \in I A[X]$ for which

$$
z=v f+r
$$

with $\operatorname{deg} r<\operatorname{deg} f$. This is easily proved by induction on the degree of z. If z has degree less than f, then we're done. If $\operatorname{deg} z \geq \operatorname{deg} f$, then writing the lead term of z as $\alpha \in I$ we see that $z-X^{\operatorname{deg} z-\operatorname{deg} f}$ has degree less than $\operatorname{deg} z$ and is in $I R[X]$.

Appplying this when $z=b$, gives

$$
\operatorname{deg}(b-v f)<\operatorname{deg} f
$$

Counting degrees shows that

$$
\operatorname{deg}(a+v g)<\operatorname{deg} g
$$

and we are done.
Theorem 41.3. Let R be any ring, let I be an ideal of R and let $h(X) \in R[X]$ be monic. Suppose that there exist monic polynomials $f_{0}(X), g_{0}(X) \in R[X]$ such that

$$
h(X) \equiv f_{0}(X) g_{0}(X) \quad(\bmod I)
$$

and such that $\left(I, f_{0}, g_{0}\right)$ generate $R[X]$. Then there exist monic polynomials $f(X), g(X) \in R[X]$ such that

$$
h(X) \equiv f(X) g(X) \quad\left(\bmod I^{2}\right),
$$

that $\left(I^{2}, f, g\right)$ generate $R[X]$ and that $f \equiv f_{0}(\bmod I)$ and $g \equiv g_{0}$ $(\bmod I)$.

Proof. Since

$$
h(X) \equiv f_{0}(X) g_{0}(X) \quad(\bmod I)
$$

we can write

$$
h(X)=f_{0}(X) g_{0}(X)+t
$$

for some $r(X) \in R[x]$ and some $t \in I$ with $\operatorname{deg} t<\operatorname{deg} f+\operatorname{deg} f$. Since $R[X]$ is generated by I along with f_{0} and g_{0}, it is also generated by I^{2} along with f_{0} and g_{0}, so applying the theorem above with $A=R / I^{2}$, we can write

$$
a f_{0}+b g_{0}=t+v
$$

for $\operatorname{deg} a<\operatorname{deg} g, \operatorname{deg} b<\operatorname{deg} f, a, b \in I R[X]$, and and $v \in I^{2} R[X]$. Letting $f=f_{0}+b$ and $g=g_{0}+a$, we have

$$
\begin{aligned}
f g & =\left(f_{0}+b\right)\left(g_{0}+a\right) \\
& =f_{0} g_{0}+\left(a f_{0}+b f_{0}\right)+a b \\
& \equiv f_{0} g_{0}+t+v \quad\left(\bmod I^{2}\right) \\
& \equiv h(X) \quad\left(\bmod I^{2}\right) .
\end{aligned}
$$

Since f and g are congruent to f_{0} and g_{0} modulo I, we see that (f, g, I) generates $R[X]$, which means that $\left(f, g, I^{2}\right)$ generates $R[X]$, as desired.

Corollary 41.4 (Hensel's Lemma). Let \hat{K} and let B_{v} be as usual. Let $h(X) \in B_{v}[X]$. Suppose that

$$
h(X) \equiv \overline{f(X)} \overline{g(X)} \quad\left(\bmod \mathcal{M}_{v}\right)
$$

for some coprime $\overline{f(X)}$ and $\overline{g(X)}$ in $R / \mathcal{M}_{v}[X]$. Then there exist $f, g \in$ $B_{v}[X]$ such that

$$
h(X)=f(X) g(X)
$$

and

$$
f(X) \equiv \overline{f(X)} \quad\left(\bmod \mathcal{M}_{v}\right)
$$

and

$$
g(X) \equiv \overline{g(X)} \quad\left(\bmod \mathcal{M}_{v}\right)
$$

Proof. Choose $f(x)$ and $g(x)$ such that

$$
f(x) \equiv \overline{f(X)} \quad\left(\bmod \mathcal{M}_{v}\right)
$$

and

$$
g(x) \equiv \overline{g(X)} \quad\left(\bmod \mathcal{M}_{v}\right)
$$

Applying the theorem above to $f(x)$ and $g(x)$ with $I=\mathcal{M}_{v}$, we obtain f_{1}, g_{2} such that

$$
h(X) \equiv f_{1}(X) g_{1}(X) \quad\left(\bmod \mathcal{M}_{v}^{2}\right)
$$

and $f_{1}(X)$ and $g_{1}(X)$ generate $R[X]$ modulo \mathcal{M}_{v}^{2}. We can apply the above theorem to $f_{1}(X)$ and $g_{1}(X)$ with $I=\mathcal{M}_{v}$ and so on, thus obtaining $f_{n}, f_{n-1}, g_{n}, g_{n-1}$ with

$$
f_{n} \equiv f_{n-1} \quad\left(\bmod \mathcal{M}_{v}^{2^{n-1}}\right)
$$

and

$$
g_{n} \equiv g_{n-1} \quad\left(\bmod \mathcal{M}_{v}^{2^{n-1}}\right)
$$

and

$$
h(X) \equiv f_{n}(X) g_{n}(X) \quad\left(\bmod \mathcal{M}_{v}^{2^{n}}\right)
$$

This gives a Cauchy sequence of polynomials (i.e. the coefficients of the polynomials form a Cauchy sequence) $\left(f_{n}\right)_{n=1}^{\infty}$ and $\left(g_{n}\right)_{n=1}^{\infty}$ with limits f and g, respectively, in $B_{v}[X]$. Furthermore, we have
$h(X)-f(X) g(X) \equiv h(X)-f_{n}(X) g_{n}(X) \quad\left(\bmod \mathcal{M}_{v}^{2^{n}}\right) \equiv 0 \quad\left(\bmod \mathcal{M}_{v}^{2^{n}}\right)$
for any integer n. Thus $h(X)-f(X) g(X)=0$, so $h(X)=f(X) g(X)$.

Remark 41.5. If h is monic, then we can assume that f and g are monic after multiplying by a suitable unit. In this case, we must have $\operatorname{deg} f=\operatorname{deg} \bar{f}$ and $\operatorname{deg} g=\operatorname{deg} \bar{g}$
Corollary 41.6. Let $h(X)$ be a monic polynomial in $B_{v}[X]$ such that there exists $\alpha \in B_{v}$ for which $h(\alpha) \equiv 0\left(\bmod \mathcal{M}_{v}\right)$ and $h^{\prime}(\alpha) \not \equiv 0$ $\left(\bmod \mathcal{M}_{v}\right)$. Then there exist a unique $\beta \in B_{v}$ such that

$$
h(\beta)=0
$$

and $\beta \equiv \alpha\left(\bmod \mathcal{M}_{v}\right)$.

Proof. Let \bar{h} denote $h(\bmod \mathcal{M})$. IF \bar{h} has a root $\bar{\alpha}$ modulo \mathcal{M} and $h^{\prime}(\alpha) \not \equiv 0(\bmod \mathcal{M})$. Then we can write

$$
\bar{h} \equiv(X-\bar{\alpha}) \overline{g(X)}
$$

for some $\overline{g(X)}$ that is prime to $(X-\bar{\alpha})$. By the remark above, this gives rise to a factorization $h=f(X) g(X)$ where

$$
g \equiv \overline{g(X)} \quad(\bmod \mathcal{M})
$$

and

$$
f \equiv(X-\bar{\alpha}) \quad(\bmod \mathcal{M})
$$

and f and g are monic with degrees equal to 1 and $\operatorname{deg} \overline{g(X)}$, respectively. Thus, f must be equal to $(X-\beta)$ for some $\beta \equiv \alpha(\bmod \mathcal{M})$. To see that β must be unique, we note that if β were not unique, then α would be a multiple root of \bar{h} and we would have $h^{\prime}(\alpha) \equiv 0$ $(\bmod \mathcal{M})$.

Some of the results above are reminiscent of the result we prove about how primes split in extensions. Now, we will prove a result about extensions of complete fields. From now on, we'll denote complete fields as K_{v} rather than as \hat{K}. We will begin by showing that a nonarchimedean valuation can always be extended. First, a word on archimedean absolute values for number fields. We know that \mathbb{Q} completed at the archimedean absolute value is equal to \mathbb{R}. Suppose that we have a finite extension L of \mathbb{Q} and we want to know how we extend the archimedean valuation on \mathbb{Q} to L. Let w be a valuation on L extending the usual absolute value on \mathbb{Q}. Thus L_{w} must contain \mathbb{R}. We can write

$$
L \cong \mathbb{Q}[X] / f(X)
$$

for some monic polynomial $f(X)$ irreducible over \mathbb{Q}. Let $\alpha \in L$ have the property that f is the minimal monic for α over \mathbb{Q}. Since $L=\mathbb{Q}(\alpha)$, we must have $L_{w}=\mathbb{R}(i(\alpha))$ for some embedding of i of α into the algebraic closure of \mathbb{R} (i.e. \mathbb{C}). Now, $i(\alpha)$ must satisfy some polynomial irreducible over \mathbb{R} that divides $f(X)$. So to figure out what L_{w} might be, we simply look at how $f(X)$ splits into irreducible factors over \mathbb{R}. This is the same thing as finding a maximal ideal in

$$
\mathbb{R}[X] / f(X) \cong L \oplus_{\mathbb{Q}} \mathbb{R}
$$

so we can see all the completions L_{w} in easy manner. By exactly the same reasoning, we can see all the completions of L with respect to absolute values extending the p-adic absolute values by taking looking
at the irreducible factors of $f(X)$ over \mathbb{Q}_{p}, other words, finding the maximal ideals of

$$
\mathbb{Q}_{p}[X] / f(X)
$$

Since any factor of f modulo p lifts to a factor of f in \mathbb{Q}_{p}, this set of maximal ideals looks suspiciously like the primes in \mathcal{O}_{L} lying over p. We will now see that is indeed exactly the case.

Proposition 41.7. Let v be a discrete valuation on a field K and let L be a finite separable field extension of K. Let B the set of x in K with $v(x) \geq 0$ and let C be the integral closure of B in L. Then the absolute values $|\cdot|_{w}$ on L extending $|\cdot|_{v}$ are in one-to-one correspondence with the primes \mathcal{P} in \mathcal{O}_{L} lying over the maximal ideal \mathcal{M} of B.

We will prove this next time.

