Math 531 Tom Tucker NOTES FROM CLASS 12/06

Throughout this class, we set the following notation. Let K be a field with a discrete valuation v and let \hat{K} be the completion of K with respect to $|\cdot|_v$ where

$$|x|_v = e^{-v(x)}.$$

By convention $v(0) = \infty$. We define B_v to be the set of $x \in \tilde{K}$ with $v(x) \ge 0$ and let \mathcal{M}_v be the maximal ideal in B_v .

Proposition 41.1. With notation as above, let us denote as B the set of all $x \in K$ such that $v(x) \geq 0$ and let us denote as \mathcal{M} the maximal ideal of B. For any $n \geq 1$, the inclusion $K \hookrightarrow \hat{K}$ induces an isomorphism

$$B/\mathcal{M}^t \cong B_v/\mathcal{M}_v^t$$

Proof. Let $(a_i)_{i=1}^{\infty}$ be a Cauchy sequence of K. Since \mathcal{M}_v^t consists of elements x for which $v(x) \geq n$ it is clear that the kernel of the natural map

$$\phi: B/\mathcal{M}^t \longrightarrow B_v/\mathcal{M}_v^t$$

consists of elements in B for which $v(x) \ge t$. These are precisely the elements in \mathcal{M}^t , so the map above is injective. Now, we will show that it is surjective. Take any Cauchy sequence $(a_i)_{i=1}^{\infty}$. Let $\epsilon = e^{-t}$. Then there exists $N_{\epsilon} \in \mathbb{Z}$ such that for all $m, n \ge N_{\epsilon}$, we have $|a_m - a_n|_v < \epsilon$. Letting $x = a_{N_{\epsilon}}$, we see that for all

$$|x - a_n|_v < e^{-t}$$

so $|x - (a_i)_{i=1}^{\infty}| < e^{-t}$. Thus $v(x - (a_i)_{i=1}^{\infty}) \ge t$, so
 $x \equiv (a_i)_{i=1}^{\infty} \pmod{\mathcal{M}_v^t}$

and $\phi(x) = (a_i)_{i=1}^{\infty}$.

For discrete valuations v on field K, we have an explicit way of writing out an element of \hat{K} . This is analogous to the decimal expansion for a real number. Here is set-up: let B_v be the set of all $x \in K$ for which $v(x) \geq 0$. Then B_v is a local principal ideal domain with maximal ideal \mathcal{M}_v generated by some $\pi \in B_v$. Let \mathcal{U} be complete set of residue classes for B_v modulo \mathcal{M}_v . When B_v is $\mathbb{Z}_{(p)}$, we can take these to be $0, 1, \ldots, p-1$ for example; in general, we just take inverse images of all the elements in B_v/\mathcal{M}_v . Then any $x \in \hat{K}$ has a unique representation as a Laurent series

(1)
$$x = \sum_{\substack{i=v(x)\\1}}^{\infty} u_i \pi^i$$

where $u_i \in \mathcal{U}$, $u_i = 0$ for u < v(a), and π generates \mathcal{M}_v . To see this, we first note that such a sum does indeed give rise to a Cauchy sequence in K since $(\sum_{i=-v(x)}^{j} u_i \pi^i)_j$ is a Cauchy sequence since $|\cdot|$ is nonarchimedean, i.e. it is easy to see that for any m, n > N, we have

$$|\sum_{i=v(x)}^{n} u_i \pi^i - \sum_{i=v(x)}^{m} u_i \pi^i| < e^{-N}$$

since all the terms cancel out with up to π^N . To get an expansion of the form (1) for a nonzero $x \in \hat{K}$ (the 0 series gives us 0 of course), we proceed as follows. Let L = v(x). Then $\pi^{-L}x$ is a unit and there is a unit element u_L of \mathcal{U} such that

$$\pi^{-L}x \equiv u_L \pmod{\mathcal{M}_v}$$

It follows that

$$v(x - u_L \pi^L) = v(\pi^L (\pi^{-L} x - u_L)) \ge L + 1.$$

Applying this process to $x - u_L \pi^L$ gives us the term u_{L+1} and so on recursively.

Most of the next few pages is things you've seen before in your p-adic analysis class. I include them for completeness.

Lemma 41.2. Let A be any ring and let I be an ideal of A. Suppose that $f(x), g(x) \in A[X]$ are monic polynomials that generate all of A[X]. Let $t \in IR[X]$ have degree less than deg f + deg g. Then we can write

$$af + bg = t$$

for polynomials $a, b \in IA[x]$ such that deg $a < \deg g$ and deg $b < \deg f$.

Proof. For any $v \in A[X]$, we have

$$(a+vg)f = (b-vf)g = 1$$

Since f is monic, for any $z \in IA[X]$, there is some $v \in IA[X]$ for which

$$z = vf + r$$

with deg $r < \deg f$. This is easily proved by induction on the degree of z. If z has degree less than f, then we're done. If deg $z \ge \deg f$, then writing the lead term of z as $\alpha \in I$ we see that $z - X^{\deg z - \deg f}$ has degree less than deg z and is in IR[X].

Appplying this when z = b, gives

$$\deg(b - vf) < \deg f.$$

Counting degrees shows that

$$\deg(a+vg) < \deg g$$

and we are done.

Theorem 41.3. Let R be any ring, let I be an ideal of R and let $h(X) \in R[X]$ be monic. Suppose that there exist monic polynomials $f_0(X), g_0(X) \in R[X]$ such that

$$h(X) \equiv f_0(X)g_0(X) \pmod{I}$$

and such that (I, f_0, g_0) generate R[X]. Then there exist monic polynomials $f(X), g(X) \in R[X]$ such that

$$h(X) \equiv f(X)g(X) \pmod{I^2},$$

that (I^2, f, g) generate R[X] and that $f \equiv f_0 \pmod{I}$ and $g \equiv g_0 \pmod{I}$.

Proof. Since

$$h(X) \equiv f_0(X)g_0(X) \pmod{I},$$

we can write

$$h(X) = f_0(X)g_0(X) + t$$

for some $r(X) \in R[x]$ and some $t \in I$ with deg $t < \deg f + \deg f$. Since R[X] is generated by I along with f_0 and g_0 , it is also generated by I^2 along with f_0 and g_0 , so applying the theorem above with $A = R/I^2$, we can write

$$af_0 + bg_0 = t + v$$

for deg $a < \deg g$, deg $b < \deg f$, $a, b \in IR[X]$, and and $v \in I^2R[X]$. Letting $f = f_0 + b$ and $g = g_0 + a$, we have

$$fg = (f_0 + b)(g_0 + a) = f_0g_0 + (af_0 + bf_0) + ab \equiv f_0g_0 + t + v \pmod{I^2} \equiv h(X) \pmod{I^2}.$$

Since f and g are congruent to f_0 and g_0 modulo I, we see that (f, g, I) generates R[X], which means that (f, g, I^2) generates R[X], as desired.

Corollary 41.4 (Hensel's Lemma). Let \hat{K} and let B_v be as usual. Let $h(X) \in B_v[X]$. Suppose that

$$h(X) \equiv f(X) \ g(X) \pmod{\mathcal{M}_v}$$

3

for some coprime $\overline{f(X)}$ and $\overline{g(X)}$ in $R/\mathcal{M}_v[X]$. Then there exist $f, g \in B_v[X]$ such that

$$h(X) = f(X)g(X)$$

and

$$f(X) \equiv \overline{f(X)} \pmod{\mathcal{M}_v}$$

and

$$g(X) \equiv \overline{g(X)} \pmod{\mathcal{M}_v}.$$

Proof. Choose f(x) and g(x) such that

$$f(x) \equiv \overline{f(X)} \pmod{\mathcal{M}_v}$$

and

$$g(x) \equiv \overline{g(X)} \pmod{\mathcal{M}_v}.$$

Applying the theorem above to f(x) and g(x) with $I = \mathcal{M}_v$, we obtain f_1, g_2 such that

$$h(X) \equiv f_1(X)g_1(X) \pmod{\mathcal{M}_v^2}$$

and $f_1(X)$ and $g_1(X)$ generate R[X] modulo \mathcal{M}_v^2 . We can apply the above theorem to $f_1(X)$ and $g_1(X)$ with $I = \mathcal{M}_v$ and so on, thus obtaining $f_n, f_{n-1}, g_n, g_{n-1}$ with

$$f_n \equiv f_{n-1} \pmod{\mathcal{M}_v^{2^{n-1}}}$$

and

$$g_n \equiv g_{n-1} \pmod{\mathcal{M}_v^{2^{n-1}}}$$

and

$$h(X) \equiv f_n(X)g_n(X) \pmod{\mathcal{M}_v^{2^n}}.$$

This gives a Cauchy sequence of polynomials (i.e. the coefficients of the polynomials form a Cauchy sequence) $(f_n)_{n=1}^{\infty}$ and $(g_n)_{n=1}^{\infty}$ with limits f and g, respectively, in $B_v[X]$. Furthermore, we have

$$h(X) - f(X)g(X) \equiv h(X) - f_n(X)g_n(X) \pmod{\mathcal{M}_v^{2^n}} \equiv 0 \pmod{\mathcal{M}_v^{2^n}}$$

for any integer *n*. Thus $h(X) - f(X)g(X) = 0$, so $h(X) = f(X)g(X)$.

Remark 41.5. If h is monic, then we can assume that f and g are monic after multiplying by a suitable unit. In this case, we must have $\deg f = \deg \overline{f}$ and $\deg g = \deg \overline{g}$

Corollary 41.6. Let h(X) be a monic polynomial in $B_v[X]$ such that there exists $\alpha \in B_v$ for which $h(\alpha) \equiv 0 \pmod{\mathcal{M}_v}$ and $h'(\alpha) \not\equiv 0 \pmod{\mathcal{M}_v}$. Then there exist a unique $\beta \in B_v$ such that

 $h(\beta) = 0$

and $\beta \equiv \alpha \pmod{\mathcal{M}_v}$.

Proof. Let \bar{h} denote $h \pmod{\mathcal{M}}$. IF \bar{h} has a root $\bar{\alpha} \mod{\mathcal{M}}$ and $h'(\alpha) \not\equiv 0 \pmod{\mathcal{M}}$. Then we can write

$$\bar{h} \equiv (X - \bar{\alpha})\overline{g(X)}$$

for some g(X) that is prime to $(X - \bar{\alpha})$. By the remark above, this gives rise to a factorization h = f(X)g(X) where

$$g \equiv \overline{g(X)} \pmod{\mathcal{M}}$$

and

$$f \equiv (X - \bar{\alpha}) \pmod{\mathcal{M}}$$

and f and g are monic with degrees equal to 1 and deg $\overline{g(X)}$, respectively. Thus, f must be equal to $(X - \beta)$ for some $\beta \equiv \alpha \pmod{\mathcal{M}}$. To see that β must be unique, we note that if β were not unique, then α would be a multiple root of \overline{h} and we would have $h'(\alpha) \equiv 0 \pmod{\mathcal{M}}$.

Some of the results above are reminiscent of the result we prove about how primes split in extensions. Now, we will prove a result about extensions of complete fields. From now on, we'll denote complete fields as K_v rather than as \hat{K} . We will begin by showing that a nonarchimedean valuation can always be extended. First, a word on archimedean absolute values for number fields. We know that \mathbb{Q} completed at the archimedean absolute value is equal to \mathbb{R} . Suppose that we have a finite extension L of \mathbb{Q} and we want to know how we extend the archimedean valuation on \mathbb{Q} to L. Let w be a valuation on L extending the usual absolute value on \mathbb{Q} . Thus L_w must contain \mathbb{R} . We can write

$$L \cong \mathbb{Q}[X]/f(X)$$

for some monic polynomial f(X) irreducible over \mathbb{Q} . Let $\alpha \in L$ have the property that f is the minimal monic for α over \mathbb{Q} . Since $L = \mathbb{Q}(\alpha)$, we must have $L_w = \mathbb{R}(i(\alpha))$ for some embedding of i of α into the algebraic closure of \mathbb{R} (i.e. \mathbb{C}). Now, $i(\alpha)$ must satisfy some polynomial irreducible over \mathbb{R} that divides f(X). So to figure out what L_w might be, we simply look at how f(X) splits into irreducible factors over \mathbb{R} . This is the same thing as finding a maximal ideal in

$$\mathbb{R}[X]/f(X) \cong L \oplus_{\mathbb{Q}} \mathbb{R},$$

so we can see all the completions L_w in easy manner. By exactly the same reasoning, we can see all the completions of L with respect to absolute values extending the *p*-adic absolute values by taking looking

at the irreducible factors of f(X) over \mathbb{Q}_p , other words, finding the maximal ideals of

$\mathbb{Q}_p[X]/f(X).$

Since any factor of f modulo p lifts to a factor of f in \mathbb{Q}_p , this set of maximal ideals looks suspiciously like the primes in \mathcal{O}_L lying over p. We will now see that is indeed exactly the case.

Proposition 41.7. Let v be a discrete valuation on a field K and let L be a finite separable field extension of K. Let B the set of x in K with $v(x) \ge 0$ and let C be the integral closure of B in L. Then the absolute values $|\cdot|_w$ on L extending $|\cdot|_v$ are in one-to-one correspondence with the primes \mathcal{P} in \mathcal{O}_L lying over the maximal ideal \mathcal{M} of B.

We will prove this next time.