Math 531 Tom Tucker
NOTES FROM CLASS 12/06

Throughout this class, we set the following notation. Let K be a
field with a discrete valuation v and let K be the completion of K with
respect to | - [, where

||, = e7°@.
By convention v(0) = co. We define B, to be the set of € K with
v(xz) > 0 and let M, be the maximal ideal in B,.

Proposition 41.1. With notation as above, let us denote as B the
set of all x € K such that v(z) > 0 and let us denote as M the
mazimal ideal of B. For any n > 1, the inclusion K — K induces an
1somorphism

B/M'~ B,/ M.

Proof. Let (a;)2; be a Cauchy sequence of K. Since M’ consists of
elements x for which v(z) > n it is clear that the kernel of the natural
map
¢: B/M' — B,/ M,

consists of elements in B for which v(z) > t. These are precisely the
elements in M?, so the map above is injective. Now, we will show that
it is surjective. Take any Cauchy sequence (a;)3°;. Let e = e~*. Then
there exists N, € Z such that for all m,n > N, we have |a,, —a,|, < €.
Letting x = ay., we see that for all

|z —a,|, <e”’

so |z — (a;)2,] < et Thus v(x — (a;)52,) > t, so
= (a;)52, (mod M!)
and 6(z) = (a;). .

For discrete valuations v on field K, we have an explicit way of writ-
ing out an element of K. This is analogous to the decimal expansion
for a real number. Here is set-up: let B, be the set of all v € K
for which v(x) > 0. Then B, is a local principal ideal domain with
maximal ideal M, generated by some 7 € B,. Let U be complete set
of residue classes for B, modulo M,. When B, is Z,, we can take
these to be 0,1,...,p — 1 for example; in general, we just take inverse
images of all the elements in B,/M,. Then any z € K has a unique
representation as a Laurent series
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where w; € U , u; = 0 for u < v(a), and 7 generates M,. To see

this, we first note that such a sum does indeed give rise to a Cauchy
J .
sequence in K since ( w;m); is a Cauchy sequence since | - | is
i=—v(x)
nonarchimedean, i.e. it is easy to see that for any m,n > N, we have

n m
| Z umt — Z | < e N
i=v(x) i=v(x)

since all the terms cancel out with up to 7%. To get an expansion of
the form (1) for a nonzero x € K (the 0 series gives us 0 of course), we
proceed as follows. Let L = v(x). Then 7~z is a unit and there is a
unit element u;, of U such that

7 tr=u; (mod M,).
It follows that
v(x —upr?) = o(rH(nFr —ug)) > L+ 1.

Applying this process to  — u;m” gives us the term u;,; and so on
recursively.

Most of the next few pages is things you’ve seen before in your p-adic
analysis class. I include them for completeness.

Lemma 41.2. Let A be any ring and let I be an ideal of A. Suppose
that f(z), g(z) € A[X] are monic polynomials that generate all of A[X].
Let t € IR[X] have degree less than deg f + degg. Then we can write

af +bg=t
for polynomials a,b € I Alx] such that dega < degg and degb < deg f.
Proof. For any v € A[X], we have
(at+vg)f=(b-vflg=1
Since f is monic, for any z € I A[X], there is some v € I A[X] for which
z=uvf+r

with degr < deg f. This is easily proved by induction on the degree
of z. If z has degree less than f, then we're done. If degz > deg f,
then writing the lead term of z as a € I we see that z — Xdesz—deg/
has degree less than deg 2z and is in I R[X].

Appplying this when z = b, gives

deg(b—vf) < deg f.



Counting degrees shows that
deg(a 4+ vg) < degyg

and we are done. O

Theorem 41.3. Let R be any ring, let I be an ideal of R and let
h(X) € R[X] be monic. Suppose that there exist monic polynomials
fo(X), go(X) € R[X] such that

hX) = fo(X)go(X)  (mod I)

and such that (I, fo,go0) generate R[X]. Then there exist monic poly-
nomials f(X), g(X) € R[X] such that

h(X) = f(X)g(X) (mod I?),
that (I?, f,g) generate R[X]| and that f = fy (mod I) and g = go
(mod 1).

Proof. Since
h(X) = fo(X)go(X) (mod T),
we can write

hX) = fo(X)go(X) +

for some r(X) € R[x] and some t € [ with degt < deg f +deg f. Since
R[X] is generated by I along with f; and go, it is also generated by I*
along with fy and go, so applying the theorem above with A = R/I?
we can write

afo+bgy=t+v
for dega < degg, degb < deg f, a,b € IR[X], and and v € I*R[X].
Letting f = fo+ b and g = gy + a, we have
fg=(fo+0)(g0+a)
= fogo + (afo + bfo) + ab
= fogo +t+v (mod I?)
= h(X) (mod I?).
Since f and g are congruent to fy and go modulo I, we see that (f, g, 1)

generates R[X], which means that (f, g, I?) generates R[X], as desired.
]

Corollary 41.4 (Hensel’s Lemma). Let K and let B, be as usual. Let
h(X) € B,[X]. Suppose that

WX) = f(X) g(X)  (mod M,)
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for some coprime f(X) and g(X) in R/M,[X]. Then there exist f, g €
B,[X] such that

and

and

g(X)=g(X) (mod M,).
Proof. Choose f(z) and g(x) such that
f(x) = f(X)  (mod M,)

and

g(x) =g(X) (mod M,).
Applying the theorem above to f(x) and g(x) with I = M,, we obtain
f1, g2 such that

W(X) = [1(X)g:(X)  (mod M)
and f1(X) and ¢;(X) generate R[X] modulo M2 We can apply the

above theorem to fi1(X) and ¢;(X) with /[ = M, and so on, thus
obtaining f,, fn_1, 9n, gn_1 With

fo=foo1r (mod ./\/lf,n_l)
and )

Gn = gn_1 (mod /\/13% )
and

WX) = fa(X)ga(X)  (mod M").
This gives a Cauchy sequence of polynomials (i.e. the coefficients of the
polynomials form a Cauchy sequence) (f,)5; and (g,)5; with limits
f and g, respectively, in B,[X]. Furthermore, we have
h(X)=f(X)g(X) = W(X)~fu(X)ga(X) (mod M) =0 (mod M)
for any integer n. Thus h(X) — f(X)g(X) =0, so h(X) = f(X)g(X).
O

Remark 41.5. If h is monic, then we can assume that f and g are
monic after multiplying by a suitable unit. In this case, we must have
deg f = deg f and degg = degyg

Corollary 41.6. Let h(X) be a monic polynomial in B,[X]| such that
there exists a € B, for which h(a) = 0 (mod M,) and h'(a) # 0
(mod M,). Then there exist a unique 3 € B, such that

h(B) =0
and f = a (mod M,).
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Proof. Let h denote h (mod M). IF h has a root & modulo M and
h'(a) 0 (mod M). Then we can write

BE(X—@)W

for some ¢g(X) that is prime to (X — &). By the remark above, this
gives rise to a factorization h = f(X)g(X) where

g=9(X) (mod M)
and
f=X—-a) (mod M)

and f and g are monic with degrees equal to 1 and deg g(X), respec-
tively. Thus, f must be equal to (X — ) for some 8 = o (mod M).
To see that 8 must be unique, we note that if 7 were not unique,

then o would be a multiple root of A and we would have h'(a) = 0
(mod M). O

Some of the results above are reminiscent of the result we prove
about how primes split in extensions. Now, we will prove a result
about extensions of complete fields. From now on, we’ll denote com-
plete fields as K, rather than as K. We will begin by showing that
a nonarchimedean valuation can always be extended. First, a word
on archimedean absolute values for number fields. We know that Q
completed at the archimedean absolute value is equal to R. Suppose
that we have a finite extension L of Q and we want to know how we
extend the archimedean valuation on Q to L. Let w be a valuation on
L extending the usual absolute value on Q. Thus L,, must contain R.
We can write

L=Q[X]/f(X)

for some monic polynomial f(X) irreducible over Q. Let o € L have the
property that f is the minimal monic for o over Q. Since L = Q(«),
we must have L, = R(i(a)) for some embedding of i of « into the
algebraic closure of R (i.e. C). Now, i(«) must satisfy some polynomial
irreducible over R that divides f(X). So to figure out what L,, might
be, we simply look at how f(X) splits into irreducible factors over R.
This is the same thing as finding a maximal ideal in

RIX]/F(X) = L @gR,

so we can see all the completions L,, in easy manner. By exactly the
same reasoning, we can see all the completions of L with respect to
absolute values extending the p-adic absolute values by taking looking
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at the irreducible factors of f(X) over Q,, other words, finding the

maximal ideals of
Q,[X]/ f(X).

Since any factor of f modulo p lifts to a factor of f in Q,, this set of
maximal ideals looks suspiciously like the primes in O lying over p.
We will now see that is indeed exactly the case.

Proposition 41.7. Let v be a discrete valuation on a field K and let L
be a finite separable field extension of K. Let B the set of x in K with
v(xz) > 0 and let C be the integral closure of B in L. Then the absolute
values | - |, on L extending | - |, are in one-to-one correspondence with
the primes P in O lying over the mazimal ideal M of B.

We will prove this next time.



