Math 531 Tom Tucker

NOTES FROM CLASS 12/03
There is one important difference between the p-adic absolute values and the ones coming from embedding L in to \mathbb{C}, the so-called real absolute values. This difference lies in a stronger form of the triangle inequality satisfied by the p-adic absolute values. Recall that a valuation $v: K^{*} \longrightarrow \mathbb{R}$ is a multiplicative map for which $v(x+y) \geq$ $\min (v(x), v(y))$ for any $x, y \in K^{*}$. This last condition means that

$$
|x+y|=e^{-(v(x)+v(y))} \leq e^{-\min (v(x), v(y))} \leq \max (|x|,|y|)
$$

On the other hand, for the real valuation $|\cdot|$, we have, for example

$$
|1+1|=2>\max (1,1)
$$

A valuation v is called a discrete valuation if

$$
v: K^{*} \longrightarrow \mathbb{Z} \subseteq \mathbb{R}
$$

surjectively. By convention, we set $v(0)=\infty$.
Definition 40.1. If $|x+y| \leq \max (|x|,|y|)$ for every $x, y \in K$, then $|\cdot|$ is called an nonarchimedean valuation. Otherwise, it is called an archimedean valuation.
Example 40.2. Let $L=k(x)$ for k any field. Since $B=k[x]$ is a PID, it is Dedekind. Thus, for any prime \mathcal{P} of B, the localization $B_{\mathcal{P}}$ is a DVR. Hence, for any irreducible polynomial $P \in k[x]$, we have a discrete valuation v_{P} on L, where $v_{P}(Q)$ is the highest power of P dividing Q (which is taken to be ∞ when $Q=0$) for $Q \in B$ and $v_{P}(Q / R)=v_{P}(Q)-v_{P}(R)$ for $Q, R \in B$ and $R \neq 0$.

The product formula.

Suppose that we normalize the p-adic absolute values; that is, we set $\|x\|_{p}=p^{-v_{p}(x)}$. Then for any x, we have

$$
\prod_{p}\|x\|_{p}=\frac{1}{p_{1}^{e_{1}} \cdots p_{m}^{e_{m}}}
$$

where $x= \pm p_{1}^{e_{1}} \cdots p_{m}^{e_{m}}$. Let $\|x\|_{\infty}$ denote the usual absolute value $|x|$. Let

$$
M_{\mathbb{Q}}=\{\text { primes } p\} \cup \infty .
$$

Then

$$
\prod_{v \in M_{\mathbb{Q}}}\|x\|_{p}=1
$$

This is called the product formula.
Similarly, working over $K[x]$, we call $P \in K[X]$ if P is monic, irreducible, and has degree greater than 0 . We let $\|x\|_{P}=e^{-v_{P}(x)(\operatorname{deg} P)}$.

Then letting $\|x\|_{\infty}=e^{\operatorname{deg} x}$ (this measures the degree of the poll that x has at infinity), ane letting

$$
M_{K[x]}=\{\text { primes } P \in K[X]\} \cup \infty,
$$

we have

$$
\prod_{v \in M_{K[x]}}\|x\|_{v}=1
$$

Let K be a field with a discrete valuation v and let \hat{K} be the completion of K with respect to $|\cdot|_{v}$ where

$$
|x|_{v}=e^{-v(x)}
$$

We define B_{v} to be the set of $x \in \hat{K}$ with $v(x) \geq 0$ and let \mathcal{M}_{v} be the maximal ideal in B_{v}. We see below that B_{v} is indeed a DVR.

Proposition 40.3. With notation as above, v extends to a discrete valuation on \hat{K}.

Proof. We take $v(x)=-\log \lim \left|x_{i}\right|$ for $x \neq 0$ represented by $\left(x_{i}\right)_{i=1}^{\infty}$. To see that this actually gives an integer, write $\lim \left|x_{i}\right|=C$ and if $-\log C$ is not an integer, we can pick pick ϵ so that $C-e^{-m}>\epsilon$ for all integers m. Then for any x_{i}, we have $\left|x_{i}\right|-\lim _{i}\left|x_{i}\right|>\epsilon$, which is impossible. Checking that $v(x)$ is multiplicative and $v(x+y) \leq$ $\max (v(x), v(y))$ is simple.

