Math 531 Tom Tucker

NOTES FROM CLASS 12/01
We were in the middle of computing the class group of the ring

$$
B=\mathbb{Z}[\sqrt[3]{11}]
$$

We'll denote $\sqrt[3]{11}$ as θ.
Our Minkowski constant is

$$
\frac{3!}{3^{3}} \frac{4}{\pi} \sqrt{3^{3} 11^{2}}<17
$$

so we only have to check up to 17 .
We found that all the primes in B lying over 3, 7, 11, and 13 were principal. Over 2, we obtained

$$
x^{3}-11 \equiv x^{3}-1 \equiv(x-1)\left(x^{2}+x+1\right) \quad(\bmod 2)
$$

so our primes are $(2, \theta-1)$, which we'll call \mathcal{P}_{1}, and $\left(2, \theta^{2}+\theta+1\right)$, which we'll call \mathcal{P}_{2}.

Over 5 , we get the same factorization

$$
x^{3}-11 \equiv x^{3}-1 \equiv(x-1)\left(x^{2}+x+1\right) \quad(\bmod 5)
$$

so our primes are $(5, \theta-1)$, which we'll call \mathcal{Q}_{1}, and $\left(5, \theta^{2}+\theta+1\right)$, which we'll call \mathcal{Q}_{2}.

So we only have 4 primes to look at. Moreover $\left[\mathcal{P}_{1}\right]=\left[\mathcal{P}_{2}\right]^{-1}$ and $\left[\mathcal{Q}_{1}\right]=\left[\mathcal{Q}_{2}\right]^{-1}$, so the class group is generated by $\left[\mathcal{P}_{2}\right]$ and $\left[\mathcal{Q}_{2}\right]$. Let's see if we can whittle it down a little more: we see that $\mathrm{N}\left(\mathcal{Q}_{2}\right)$ exceeds the Minkowski bound, so is in the group generated by the $\left[\mathcal{P}_{1}\right],\left[\mathcal{Q}_{1}\right],\left[\mathcal{Q}_{2}\right]$. Now, let's look at the product $\mathcal{Q}_{1} \mathcal{P}_{1}$. We see that the norm of this ideal is 10 . Since $\mathrm{N}(\theta-1)=10$, this ideal must be principal, since it is the only ideal with norm 10 in B. Thus, $\mathrm{Cl}(B)$ is generated by \mathcal{P}_{1}.

Recall that we have $\mathcal{P}_{1} \mathcal{P}_{2}=2$ and $\mathrm{N}\left(\mathcal{P}_{1}\right)=2, \mathrm{~N}\left(\mathcal{P}_{2}\right)=4$. There is in fact an element with norm 4 . We know that θ^{2} satisfies $\left(\theta^{2}\right)^{3}-11^{2}=0$, so for any $a \in \mathbb{Z}$, we have $\mathrm{N}(a-\theta)=a^{3}-11^{2}$. Thus, $\mathrm{N}\left(5-\right.$ thet $\left.a^{2}\right)=4$. Thus $\left(5-\theta^{2}\right) B$ is either \mathcal{P}_{1}^{2} or \mathcal{P}_{2}. If it is equal to \mathcal{P}_{2}, then we are done. We now that that $\mathcal{P}_{1} \mathcal{P}_{2}=2$, so if $\left(5-\theta^{2}\right) B=\mathcal{P}_{1}$, then $2 /\left(5-\theta^{2}\right)$ generates \mathcal{P}_{1} and in particular $2 /\left(5-\theta^{2}\right) \in B$. To check whether or not $2 /\left(5-\theta^{2}\right)$ is in B, we write out the matrix representing multiplication by $2 /\left(5-\theta^{2}\right)$ on $1, \theta, \theta^{2}$. We end up with

$$
\frac{1}{2}\left(\begin{array}{lll}
25 & 11 & 5 \\
55 & 25 & 11 \\
121 & 55 & 25
\end{array}\right)
$$

The entries aren't integers, so $2 /\left(5-\theta^{2}\right)$ can't be in B (actually we knew this as soon as we hit one noninteger entry). So we must have
$2 /\left(5-\theta^{2}\right)$ generates \mathcal{P}_{1}^{2}. If \mathcal{P}_{1} is principal, with generator, say, α, then $\alpha^{2}=u\left(\theta^{2}-5\right)$ for some unit $u \in B$. It turns out that $v=1+4 \theta-2 \theta^{2}$ is fundamental unit for B, so every unit can be written as $\pm v^{d}$ for some d. In particular, the unit u can be written this way. It follows that for either $\delta=1$ or $\delta=0$, the element

$$
\pm v^{\delta}\left(\theta^{2}-5\right)
$$

is a square in B. We will show that this cannot be the case. If $\pm v^{\delta}\left(\theta^{2}-\right.$ $5)$ is a square in B, then it must be a square modulo any ideal of B. In particular, we must have

$$
\pm v^{\delta}\left(\theta^{2}-5\right) \equiv(\text { square }) \quad(\bmod (\theta-2))
$$

Modding out by $\theta-2$ is the same as setting θ equal to 2 which gives us $\pm v^{\delta} 1$ in

$$
B /(\theta-2) \equiv \mathbb{Z} / 3 \mathbb{Z}
$$

this is only possible if \pm is actually - .
Let's try modding out by something else. How about by $\theta+3$. In this case we end up with

$$
-v^{\delta}\left(\theta^{2}-5\right) \equiv-\left(1+4(-3) 2(-3)^{2}\right)\left((-3)^{2}-5\right) \equiv-(9)^{\delta} 4 \quad(\bmod (\theta+3))
$$

Since $\mathrm{N}(\theta+3)=10$, we see that $B /(\theta+3)$ must be

$$
\mathbb{Z} / 19 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}
$$

so we see that $-(9)^{\delta} 4$ must be a square modulo 19 . This is impossible since -1 is not a square mod 10 and we are done.
Thus, $\operatorname{Cl}(B) \equiv \mathbb{Z} / 2 \mathbb{Z}$.
$* * * * * * * *$ Completions
Recall that we were able prove finiteness of the class group and the Dirichlet unit theorem by embedding number fields into \mathbb{C} and \mathbb{R}, in other words taking advantage of completions of the fields. It turns out we can do a similar thing at every prime \mathcal{P} of a number field. First, a definition

Definition 37.1. Let K be any field. An absolute value $|\cdot|$ on K is function $|\cdot|: K \longrightarrow \mathbb{R}$ such that
(1) $|x| \geq 0$ for every $x \in K$ and $|x|=0$ if and only if $x=0$.
(2) $|x||y|=|x y|$ for every $x, y \in K$.
(3) (Triangle inequality) $|x+y| \leq|x|+|y|$.

The book does not assume that an absolute value satisfies the triangle inequality. Here are some examples of the absolute values.

Example 37.2. (1) Any embedding $\sigma: K \longrightarrow \mathbb{C}$ induces an absolute value on K by restricting the usual absolute value on \mathbb{C} to $\sigma(K)$.
(2) Any valuation v (I'll recall what one is) on K induces an absolute value by setting $|x|=e^{-v(x)}$ for $x \neq 0$ and $|x|=0$.

Two absolute values $|\cdot|_{1}$ an $|\cdot|_{2}$ are said to be equivalent if there exist constants C_{1} and C_{2} such that

$$
|x|_{1}^{C_{1}} \leq|x|_{2} \leq|x|^{C_{2}} .
$$

For example if in 3 . above we take v to be the p-adic valuation on \mathbb{Q}, then $|x|=e^{-v(x)}$ and $|x|=p^{-v(x)}$ are equivalent.

Given an absolute value on a field, we can complete the field, with Cauchy sequences, and obtain a new field that is complete with respect to this absolute value. For example, when we complete \mathbb{Q} at the usual absolute value (called a real absolute value), we obtain \mathbb{R}. Let's try to remember how this went. From now on $|\cdot|$ is an absolute value satisfying 1., 2., 3. above.

Definition 37.3. A Cauchy sequence is a sequence $\left(x_{i}\right)_{i=1}^{\infty}$ of $x_{i} \in K$ with the property that for any $\epsilon>0$ there exists N_{ϵ} such that for any $m, n>N_{\epsilon}\left|x_{m}-x_{n}\right|<\epsilon$.

We define the completion \hat{K} of K for the absolute value $|\cdot|$ on K to be the set of all Cauchy sequences on K modulo the equivalence relation

$$
\left(x_{i}\right)_{i=1}^{\infty} \sim\left(y_{i}\right)_{i=1}^{\infty}
$$

if, for every $\epsilon>0$ there exists N_{ϵ} such for all $n>\epsilon$, we have

$$
\left|x_{n}-y_{n}\right|<\epsilon .
$$

The field K embeds into \hat{K} via constant sequences. We identify $a \in K$ with the Cauchy sequence a, a, \ldots, a, \ldots.

You've all seen this, so I'll skip the details
We see that \hat{K} is a field. As mentioned earlier, \mathbb{R} and \mathbb{C} can be obtained in this way. When $|x|_{p}=e^{-v_{p}(x)}$ for $x \in \mathbb{Q}^{*}$, and we complete, we end up with something called the p-adic numbers, denoted at \mathbb{Q}_{p}.
Theorem 37.4 (Ostrowski). Every absolute value on \mathbb{Q} is equivalent to the usual absolute value $|\cdot|$ or one of the p-adic absolute values $|\cdot|_{p}$.

We won't prove this (or use it).

