Math 531 Tom Tucker
NOTES FROM CLASS 12/01

We were in the middle of computing the class group of the ring

B = Z[V11].

We'll denote /11 as 6.
Our Minkowski constant is

14
%—\/33112 <17
T

so we only have to check up to 17.
We found that all the primes in B lying over 3, 7, 11, and 13 were
principal. Over 2, we obtained

?—1l=2*~1=@-1DE*+2+1) (mod ?2)

so our primes are (2,6 — 1), which we’ll call Py, and (2,6 + 6 + 1),
which we’ll call Ps.
Over 5, we get the same factorization

P —1l=2>-1=(x—-1)(z*+2+1) (mod5)

so our primes are (5,60 — 1), which we’ll call Q;, and (5,6% + 6 + 1),
which we’ll call Os.

So we only have 4 primes to look at. Moreover [P;] = [P,y]™! and
[Q1] = [Q2]71, so the class group is generated by [P,] and [Qs]. Let’s see
if we can whittle it down a little more: we see that N(Qs) exceeds the
Minkowski bound, so is in the group generated by the [P1],[Q1], [Qa]-
Now, let’s look at the product Q;P;. We see that the norm of this
ideal is 10. Since N(6 — 1) = 10, this ideal must be principal, since it
is the only ideal with norm 10 in B. Thus, Cl(B) is generated by P;.

Recall that we have P;Py = 2 and N(P;) = 2, N(P,2) = 4. There is in
fact an element with norm 4. We know that 6% satisfies (6%)% —11% = 0,
so for any a € Z, we have N(a—60) = a®>—112. Thus, N(5—theta®) = 4.
Thus (5 — 0%)B is either Pf or Pp. If it is equal to Py, then we are
done. We now that that PPy = 2, so if (5—60%)B = Py, then 2/(5—6?)
generates P; and in particular 2/(5—6?%) € B. To check whether or not
2/(5—6?) is in B, we write out the matrix representing multiplication
by 2/(5 — 6?) on 1,60,6?. We end up with

25 11 5
- 5 25 11
121 55 25

The entries aren’t integers, so 2/(5 — 6%) can’t be in B (actually we

knew this as soon as we hit one noninteger entry). So we must have
1
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2/(5 — 6?%) generates P?. If Py is principal, with generator, say, «, then
a? = u(6? — 5) for some unit u € B. It turns out that v = 1+ 46 — 26>
is fundamental unit for B, so every unit can be written as +v¢ for some
d. In particular, the unit v can be written this way. It follows that for
either 0 = 1 or § = 0, the element

+20° (6% — 5)

is a square in B. We will show that this cannot be the case. If +0v°(62 —
5) is a square in B, then it must be a square modulo any ideal of B.
In particular, we must have

+0°(0* — 5) = (square) (mod (6 — 2)).

Modding out by # — 2 is the same as setting 6 equal to 2 which gives
us +0°1 in

B/(6—2)=17/3Z

this is only possible if + is actually —.
Let’s try modding out by something else. How about by 6 + 3. In this
case we end up with

—0°(6?—5) = —(1+4(=3)2(=3)*)((—3)*~5) = —(9)°4 (mod (0+3))
Since N(0 + 3) = 10, we see that B/(6 + 3) must be
7.)19Z & 7,/2Z.

so we see that —(9)°4 must be a square modulo 19. This is impossible
since —1 is not a square mod 10 and we are done.
Thus, CI(B) = Z/27.

ook Completions

Recall that we were able prove finiteness of the class group and the
Dirichlet unit theorem by embedding number fields into C and R, in
other words taking advantage of completions of the fields. It turns out
we can do a similar thing at every prime P of a number field. First, a
definition

Definition 37.1. Let K be any field. An absolute value |- | on K is
function | - | : K — R such that

(1) |z| > 0 for every x € K and |z| = 0 if and only if z = 0.
(2) |z|ly| = |zy| for every z,y € K.
(3) (Triangle inequality) |z + y| < |z| + |y|.

The book does not assume that an absolute value satisfies the trian-
gle inequality. Here are some examples of the absolute values.
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Example 37.2. (1) Any embedding o : K — C induces an abso-
lute value on K by restricting the usual absolute value on C to
o(K).
(2) Any valuation v (I'll recall what one is) on K induces an absolute
value by setting |z| = 7@ for 2 # 0 and |z| = 0.

Two absolute values |- |; an | - |5 are said to be equivalent if there
exist constants C and Cy such that

27 < Jalp < 2]

For example if in 3. above we take v to be the p-adic valuation on Q,
then |z| = e7®) and |z| = p™® are equivalent.

Given an absolute value on a field, we can complete the field, with
Cauchy sequences, and obtain a new field that is complete with respect
to this absolute value. For example, when we complete Q at the usual
absolute value (called a real absolute value), we obtain R. Let’s try
to remember how this went. From now on | - | is an absolute value
satisfying 1., 2., 3. above.

Definition 37.3. A Cauchy sequence is a sequence (x;):2, of z; € K
with the property that for any € > 0 there exists /N, such that for any
m,n > N |2, — 2,] < €.

We define the completion K of K for the absolute value | - | on K
to be the set of all Cauchy sequences on K modulo the equivalence

relation
()21 ~ (W)t
if, for every € > 0 there exists N, such for all n > €, we have
|z, — yn| < €.

The field K embeds into K via constant sequences. We identify a € K
with the Cauchy sequence a,a, ..., a,....

You've all seen this, so I’ll Sklp the detalls

We see that K is a field. As mentioned earlier, R and C can be
obtained in this way. When |z, = e~vr@ for x € Q*, and we complete,
we end up with something called the p-adic numbers, denoted at Q,.

Theorem 37.4 (Ostrowski). Every absolute value on Q is equivalent
to the usual absolute value | -| or one of the p-adic absolute values |- |,.

We won't prove this (or use it).



