
Math 531 Tom Tucker
NOTES FROM CLASS 12/01

We were in the middle of computing the class group of the ring

B = Z[
3
√

11].

We’ll denote 3
√

11 as θ.
Our Minkowski constant is

3!

33

4

π

√
33112 < 17

so we only have to check up to 17.
We found that all the primes in B lying over 3, 7, 11, and 13 were

principal. Over 2, we obtained

x3 − 11 ≡ x3 − 1 ≡ (x− 1)(x2 + x + 1) (mod 2)

so our primes are (2, θ − 1), which we’ll call P1, and (2, θ2 + θ + 1),
which we’ll call P2.

Over 5, we get the same factorization

x3 − 11 ≡ x3 − 1 ≡ (x− 1)(x2 + x + 1) (mod 5)

so our primes are (5, θ − 1), which we’ll call Q1, and (5, θ2 + θ + 1),
which we’ll call Q2.

So we only have 4 primes to look at. Moreover [P1] = [P2]
−1 and

[Q1] = [Q2]
−1, so the class group is generated by [P2] and [Q2]. Let’s see

if we can whittle it down a little more: we see that N(Q2) exceeds the
Minkowski bound, so is in the group generated by the [P1], [Q1], [Q2].
Now, let’s look at the product Q1P1. We see that the norm of this
ideal is 10. Since N(θ − 1) = 10, this ideal must be principal, since it
is the only ideal with norm 10 in B. Thus, Cl(B) is generated by P1.

Recall that we have P1P2 = 2 and N(P1) = 2, N(P2) = 4. There is in
fact an element with norm 4. We know that θ2 satisfies (θ2)3−112 = 0,
so for any a ∈ Z, we have N(a−θ) = a3−112. Thus, N(5−theta2) = 4.
Thus (5 − θ2)B is either P2

1 or P2. If it is equal to P2, then we are
done. We now that that P1P2 = 2, so if (5−θ2)B = P1, then 2/(5−θ2)
generates P1 and in particular 2/(5−θ2) ∈ B. To check whether or not
2/(5− θ2) is in B, we write out the matrix representing multiplication
by 2/(5− θ2) on 1, θ, θ2. We end up with

1

2

 25 11 5
55 25 11
121 55 25


The entries aren’t integers, so 2/(5 − θ2) can’t be in B (actually we
knew this as soon as we hit one noninteger entry). So we must have

1
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2/(5− θ2) generates P2
1 . If P1 is principal, with generator, say, α, then

α2 = u(θ2− 5) for some unit u ∈ B. It turns out that v = 1 + 4θ− 2θ2

is fundamental unit for B, so every unit can be written as ±vd for some
d. In particular, the unit u can be written this way. It follows that for
either δ = 1 or δ = 0, the element

±vδ(θ2 − 5)

is a square in B. We will show that this cannot be the case. If ±vδ(θ2−
5) is a square in B, then it must be a square modulo any ideal of B.
In particular, we must have

±vδ(θ2 − 5) ≡ (square) (mod (θ − 2)).

Modding out by θ − 2 is the same as setting θ equal to 2 which gives
us ±vδ1 in

B/(θ − 2) ≡ Z/3Z
this is only possible if ± is actually −.
Let’s try modding out by something else. How about by θ + 3. In this
case we end up with

−vδ(θ2−5) ≡ −(1+4(−3)2(−3)2)((−3)2−5) ≡ −(9)δ4 (mod (θ+3))

Since N(θ + 3) = 10, we see that B/(θ + 3) must be

Z/19Z⊕ Z/2Z

so we see that −(9)δ4 must be a square modulo 19. This is impossible
since −1 is not a square mod 10 and we are done.
Thus, Cl(B) ≡ Z/2Z.

********Completions
Recall that we were able prove finiteness of the class group and the

Dirichlet unit theorem by embedding number fields into C and R, in
other words taking advantage of completions of the fields. It turns out
we can do a similar thing at every prime P of a number field. First, a
definition

Definition 37.1. Let K be any field. An absolute value | · | on K is
function | · | : K −→ R such that

(1) |x| ≥ 0 for every x ∈ K and |x| = 0 if and only if x = 0.
(2) |x||y| = |xy| for every x, y ∈ K.
(3) (Triangle inequality) |x + y| ≤ |x|+ |y|.

The book does not assume that an absolute value satisfies the trian-
gle inequality. Here are some examples of the absolute values.
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Example 37.2. (1) Any embedding σ : K −→ C induces an abso-
lute value on K by restricting the usual absolute value on C to
σ(K).

(2) Any valuation v (I’ll recall what one is) on K induces an absolute
value by setting |x| = e−v(x) for x 6= 0 and |x| = 0.

Two absolute values | · |1 an | · |2 are said to be equivalent if there
exist constants C1 and C2 such that

|x|C1
1 ≤ |x|2 ≤ |x|C2 .

For example if in 3. above we take v to be the p-adic valuation on Q,
then |x| = e−v(x) and |x| = p−v(x) are equivalent.

Given an absolute value on a field, we can complete the field, with
Cauchy sequences, and obtain a new field that is complete with respect
to this absolute value. For example, when we complete Q at the usual
absolute value (called a real absolute value), we obtain R. Let’s try
to remember how this went. From now on | · | is an absolute value
satisfying 1., 2., 3. above.

Definition 37.3. A Cauchy sequence is a sequence (xi)
∞
i=1 of xi ∈ K

with the property that for any ε > 0 there exists Nε such that for any
m,n > Nε |xm − xn| < ε.

We define the completion K̂ of K for the absolute value | · | on K
to be the set of all Cauchy sequences on K modulo the equivalence
relation

(xi)
∞
i=1 ∼ (yi)

∞
i=1

if, for every ε > 0 there exists Nε such for all n > ε, we have

|xn − yn| < ε.

The field K embeds into K̂ via constant sequences. We identify a ∈ K
with the Cauchy sequence a, a, . . . , a, . . . .

You’ve all seen this, so I’ll skip the details
We see that K̂ is a field. As mentioned earlier, R and C can be

obtained in this way. When |x|p = e−vp(x) for x ∈ Q∗, and we complete,
we end up with something called the p-adic numbers, denoted at Qp.

Theorem 37.4 (Ostrowski). Every absolute value on Q is equivalent
to the usual absolute value | · | or one of the p-adic absolute values | · |p.

We won’t prove this (or use it).


