Math 531 Tom Tucker NOTES FROM CLASS 12/01

We were in the middle of computing the class group of the ring

$$B = \mathbb{Z}[\sqrt[3]{11}].$$

We'll denote $\sqrt[3]{11}$ as θ .

Our Minkowski constant is

$$\frac{3!}{3^3} \frac{4}{\pi} \sqrt{3^3 11^2} < 17$$

so we only have to check up to 17.

We found that all the primes in B lying over 3, 7, 11, and 13 were principal. Over 2, we obtained

$$x^3 - 11 \equiv x^3 - 1 \equiv (x - 1)(x^2 + x + 1) \pmod{2}$$

so our primes are $(2, \theta - 1)$, which we'll call \mathcal{P}_1 , and $(2, \theta^2 + \theta + 1)$, which we'll call \mathcal{P}_2 .

Over 5, we get the same factorization

$$x^{3} - 11 \equiv x^{3} - 1 \equiv (x - 1)(x^{2} + x + 1) \pmod{5}$$

so our primes are $(5, \theta - 1)$, which we'll call Q_1 , and $(5, \theta^2 + \theta + 1)$, which we'll call Q_2 .

So we only have 4 primes to look at. Moreover $[\mathcal{P}_1] = [\mathcal{P}_2]^{-1}$ and $[\mathcal{Q}_1] = [\mathcal{Q}_2]^{-1}$, so the class group is generated by $[\mathcal{P}_2]$ and $[\mathcal{Q}_2]$. Let's see if we can whittle it down a little more: we see that $N(\mathcal{Q}_2)$ exceeds the Minkowski bound, so is in the group generated by the $[\mathcal{P}_1], [\mathcal{Q}_1], [\mathcal{Q}_2]$. Now, let's look at the product $\mathcal{Q}_1 \mathcal{P}_1$. We see that the norm of this ideal is 10. Since $N(\theta - 1) = 10$, this ideal must be principal, since it is the only ideal with norm 10 in B. Thus, Cl(B) is generated by \mathcal{P}_1 .

Recall that we have $\mathcal{P}_1\mathcal{P}_2 = 2$ and $N(\mathcal{P}_1) = 2$, $N(\mathcal{P}_2) = 4$. There is in fact an element with norm 4. We know that θ^2 satisfies $(\theta^2)^3 - 11^2 = 0$, so for any $a \in \mathbb{Z}$, we have $N(a-\theta) = a^3 - 11^2$. Thus, $N(5-theta^2) = 4$. Thus $(5-\theta^2)B$ is either \mathcal{P}_1^2 or \mathcal{P}_2 . If it is equal to \mathcal{P}_2 , then we are done. We now that that $\mathcal{P}_1\mathcal{P}_2 = 2$, so if $(5-\theta^2)B = \mathcal{P}_1$, then $2/(5-\theta^2)$ generates \mathcal{P}_1 and in particular $2/(5-\theta^2) \in B$. To check whether or not $2/(5-\theta^2)$ is in B, we write out the matrix representing multiplication by $2/(5-\theta^2)$ on $1, \theta, \theta^2$. We end up with

$$\frac{1}{2} \left(\begin{array}{rrrr} 25 & 11 & 5\\ 55 & 25 & 11\\ 121 & 55 & 25 \end{array} \right)$$

The entries aren't integers, so $2/(5 - \theta^2)$ can't be in B (actually we knew this as soon as we hit one noninteger entry). So we must have

 $2/(5-\theta^2)$ generates \mathcal{P}_1^2 . If \mathcal{P}_1 is principal, with generator, say, α , then $\alpha^2 = u(\theta^2 - 5)$ for some unit $u \in B$. It turns out that $v = 1 + 4\theta - 2\theta^2$ is fundamental unit for B, so every unit can be written as $\pm v^d$ for some d. In particular, the unit u can be written this way. It follows that for either $\delta = 1$ or $\delta = 0$, the element

$$\pm v^{\delta}(\theta^2 - 5)$$

is a square in *B*. We will show that this cannot be the case. If $\pm v^{\delta}(\theta^2 - 5)$ is a square in *B*, then it must be a square modulo any ideal of *B*. In particular, we must have

$$\pm v^{\delta}(\theta^2 - 5) \equiv (\text{square}) \pmod{(\theta - 2)}.$$

Modding out by $\theta - 2$ is the same as setting θ equal to 2 which gives us $\pm v^{\delta} 1$ in

$$B/(\theta - 2) \equiv \mathbb{Z}/3\mathbb{Z}$$

this is only possible if \pm is actually -.

Let's try modding out by something else. How about by $\theta + 3$. In this case we end up with

$$-v^{\delta}(\theta^2 - 5) \equiv -(1 + 4(-3)2(-3)^2)((-3)^2 - 5) \equiv -(9)^{\delta}4 \pmod{(\theta + 3)}$$

Since $N(\theta + 3) = 10$, we see that $B/(\theta + 3)$ must be

$$\mathbb{Z}/19\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$$

so we see that $-(9)^{\delta}4$ must be a square modulo 19. This is impossible since -1 is not a square mod 10 and we are done. Thus, $\operatorname{Cl}(B) \equiv \mathbb{Z}/2\mathbb{Z}$.

 $Hus, Cl(D) \equiv \mathbb{Z}/2\mathbb{Z}$. ******Completions

Recall that we were able prove finiteness of the class group and the Dirichlet unit theorem by embedding number fields into \mathbb{C} and \mathbb{R} , in other words taking advantage of completions of the fields. It turns out we can do a similar thing at every prime \mathcal{P} of a number field. First, a definition

Definition 37.1. Let K be any field. An *absolute value* $| \cdot |$ on K is function $| \cdot | : K \longrightarrow \mathbb{R}$ such that

(1) $|x| \ge 0$ for every $x \in K$ and |x| = 0 if and only if x = 0.

- (2) |x||y| = |xy| for every $x, y \in K$.
- (3) (Triangle inequality) $|x + y| \le |x| + |y|$.

The book does not assume that an absolute value satisfies the triangle inequality. Here are some examples of the absolute values.

- **Example 37.2.** (1) Any embedding $\sigma : K \longrightarrow \mathbb{C}$ induces an absolute value on K by restricting the usual absolute value on \mathbb{C} to $\sigma(K)$.
 - (2) Any valuation v (I'll recall what one is) on K induces an absolute value by setting $|x| = e^{-v(x)}$ for $x \neq 0$ and |x| = 0.

Two absolute values $|\cdot|_1$ an $|\cdot|_2$ are said to be equivalent if there exist constants C_1 and C_2 such that

$$|x|_1^{C_1} \le |x|_2 \le |x|^{C_2}.$$

For example if in 3. above we take v to be the p-adic valuation on \mathbb{Q} , then $|x| = e^{-v(x)}$ and $|x| = p^{-v(x)}$ are equivalent.

Given an absolute value on a field, we can complete the field, with Cauchy sequences, and obtain a new field that is complete with respect to this absolute value. For example, when we complete \mathbb{Q} at the usual absolute value (called a real absolute value), we obtain \mathbb{R} . Let's try to remember how this went. From now on $|\cdot|$ is an absolute value satisfying 1., 2., 3. above.

Definition 37.3. A Cauchy sequence is a sequence $(x_i)_{i=1}^{\infty}$ of $x_i \in K$ with the property that for any $\epsilon > 0$ there exists N_{ϵ} such that for any $m, n > N_{\epsilon} |x_m - x_n| < \epsilon$.

We define the completion \hat{K} of K for the absolute value $|\cdot|$ on K to be the set of all Cauchy sequences on K modulo the equivalence relation

$$(x_i)_{i=1}^{\infty} \sim (y_i)_{i=1}^{\infty}$$

if, for every $\epsilon > 0$ there exists N_{ϵ} such for all $n > \epsilon$, we have

 $|x_n - y_n| < \epsilon.$

The field K embeds into \hat{K} via constant sequences. We identify $a \in K$ with the Cauchy sequence a, a, \ldots, a, \ldots

You've all seen this, so I'll skip the details

We see that \tilde{K} is a field. As mentioned earlier, \mathbb{R} and \mathbb{C} can be obtained in this way. When $|x|_p = e^{-v_p(x)}$ for $x \in \mathbb{Q}^*$, and we complete, we end up with something called the *p*-adic numbers, denoted at \mathbb{Q}_p .

Theorem 37.4 (Ostrowski). Every absolute value on \mathbb{Q} is equivalent to the usual absolute value $|\cdot|$ or one of the p-adic absolute values $|\cdot|_p$.

We won't prove this (or use it).