Math 531 Tom Tucker

NOTES FROM CLASS 11/29
We had just finished proving:
Proposition 36.1. $\ell\left(\mathcal{O}_{L}^{*}\right)$ is a full lattice in H.
Proof. We have already seen that $\ell\left(\mathcal{O}_{L}^{*}\right)$ is a lattice in H. It is a full lattice since it generates a \mathbb{R}-vector space of dimension $r+s-1$, which must be equal to H (since $\operatorname{dim}_{\mathbb{R}} H=r+s-1$).
Theorem 36.2. Let μ_{L} be the roots of unity in L as usual. There exist elements $v_{1}, \ldots, v_{r+s-1} \in \mathcal{O}_{L}^{*}$ such that every unit $u \in \mathcal{O}_{L}^{*}$ can be written uniquely as

$$
u=v v_{1}^{m_{1}} \cdots v_{r+s-1}^{m_{r+s-1}}
$$

for $v \in \mu_{L}$ and $m_{i} \in \mathbb{Z}$.
Proof. Let v_{1}, \ldots, v_{r+s-1} have the property that $\ell\left(v_{1}\right), \ldots, \ell\left(v_{r+s-1}\right)$ generate $\ell\left(\mathcal{O}_{L}^{*}\right)$ as a \mathbb{Z}-module. Since $\operatorname{ker} \ell=\mu_{L}$, we know that every unit $u \in \mathcal{O}_{L}^{*}$ can be written as $v z$, where z is in the subgroup generated by the v_{1}, \ldots, v_{r+s-1}. The element z is uniquely determine by $\ell(u)$ as

$$
v_{1}^{m_{1}} \cdots v_{r+s-1}^{m_{r+s-1}}
$$

for some integers m_{i}. Then $v=z u^{-1}$ and is therefore also uniquely determined.

Let's go through this in the case of quadratic fields Let's look at the case of quadratic field first. If L is an imaginary quadratic field, then \mathcal{O}_{L} can be thought of as a subfield of \mathbb{C} and $\mathrm{N}(x)=x \bar{x}=a^{2}+b^{2}$, where $x=a+i b$. If $a^{2}+b^{2}=1$, then $a+b i$ lies on the unit circle. We can go a bit further and write $\mathcal{O}_{L} \subseteq \mathbb{Z} \omega$ where $\omega=\frac{1+\sqrt{-d}}{2}$ for some positive squarefree d. Then any norm can be written as $\frac{a^{2}+d b^{2}}{4}$. In order to have

$$
\begin{equation*}
\frac{a^{2}+d b^{2}}{4}=1 \tag{1}
\end{equation*}
$$

we must have $d \leq 4$ or $b=0$. When $b=0$, we must have $a^{2}=4$, so $a= \pm 2$, which gives us the obvious units ± 1. When $d=2$, we cannot solve (1) except with $b=0$ and $a= \pm 1$. When $d=3$, we have 4 additional solutions

$$
\frac{ \pm 1 \pm \sqrt{-3}}{2}
$$

It is easy to check that that all of these are powers of ξ_{6}, a primitive 6 -th root of unity. We've shown then that in an imaginary quadratic the only units are the roots of unity.

What about real quadratics? In this case a unit $x+\sqrt{d} y$ (d positive and squarefree) with $x, y \in \mathbb{Z}$ is solution to Pell's equation

$$
x^{2}-d y^{2}=1
$$

It was known in the 19th century that this has a solution other than $y=0$ and $x= \pm 1$ and that there is a fundamental solution $u=x+y \sqrt{d}$ such that any other nontrivial (not ± 1) solution v is a power of u (so we don't need the Dirichlet unit theomre). Furthermore, we know that u is not a root of unity since the only roots of unity in \mathbb{R} are ± 1. For real quadratics, then the free rank of \mathcal{O}_{L}^{*} is 1 .

There is an interesting example in the book with cubic fields that I will work through now. Take the ring

$$
B=\mathbb{Z}[\sqrt[3]{11}]
$$

Then $|\Delta(B / \mathbb{Z})|=3^{3} 11^{2}$. Since $11^{3} \not \equiv 11 \bmod 3^{2}$, this is a Dedekind domain. Let's try to calculate its class group. We end up with a Minkowski constant of

$$
\frac{3!}{3^{3}} \frac{4}{\pi} \sqrt{3^{3} 11^{2}}<17
$$

so we only have to check up to 17 . Let's get rid of the ramified primes first: over 3, we have

$$
x^{3}-11 \equiv\left(x^{3}-2\right) \equiv(x-2)^{3} \quad(\bmod 3)
$$

so the prime over 3 is $(3, \sqrt[3]{11}-2)$ and $\mathrm{N}(\sqrt[3]{11}-2)=-3$, so this ideal is generated by $\sqrt[3]{11}-2$. Similarly at 11 , we obtain

$$
x^{3}-11 \equiv x^{3} \quad(\bmod 11),
$$

so the ideal over 11 is $(11, \sqrt[3]{11})$, which is obviously generated by $\sqrt[3]{11}$. Now, let's start checking the other primes over 2,

$$
x^{3}-11 \equiv x^{3}-1 \equiv(x-1)\left(x^{2}+x+1\right) \quad(\bmod 2)
$$

so our primes are $(2, \sqrt[3]{11}-1)$, which we'll call \mathcal{P}_{1}, and $\left(2, \sqrt[3]{11}^{2}+\right.$ $\sqrt[3]{11}+1$), which we'll call \mathcal{P}_{2}.

Over 5, we get the same factorizaion

$$
x^{3}-11 \equiv x^{3}-1 \equiv(x-1)\left(x^{2}+x+1\right) \quad(\bmod 5)
$$

so our primes are $(5, \sqrt[3]{11}-1)$, which we'll call \mathcal{Q}_{1}, and $\left(5, \sqrt[3]{11}^{2}+\right.$ $\sqrt[3]{11}+1$), which we'll call \mathcal{Q}_{2}.

Looking at 7 , the only elements with cube roots $\bmod 7$ are ± 1, so $x^{3}-11$ is irreducible mod 7 . Thus, $7 B$ is irreducible and principal.

Similarly at 13 , the only elements with cube roots are $\pm 1,8$, and 5 , so $x^{3}-11$ is irreducible mod 13 . Thus $13 B$ is irreducible and principal.

So we only have 4 primes to look at. Moreover $\left[\mathcal{P}_{1}\right]=\left[\mathcal{P}_{2}\right]^{-1}$ and $\left[\mathcal{Q}_{1}\right]=\left[\mathcal{Q}_{2}\right]^{-1}$, so the class group is generated by $\left[\mathcal{P}_{2}\right]$ and $\left[\mathcal{Q}_{2}\right]$. Let's see if we can whittle it down a little more: we see that $\mathrm{N}\left(\mathcal{Q}_{2}\right)$ exceeds the Minkowski bound, so is in the group generated by the $\left[\mathcal{P}_{1}\right],\left[\mathcal{Q}_{1}\right],\left[\mathcal{Q}_{2}\right]$. Now, let's look at the product $\mathcal{Q}_{1} \mathcal{P}_{1}$. We see that the norm of this ideal is 10 . Since $\mathrm{N}(\theta-1)=10$, this ideal must be principal, since it is the only ideal with norm 10 in B. Thus, $\mathrm{Cl}(B)$ is generated by \mathcal{Q}_{1}.

