
Math 531 Tom Tucker
NOTES FROM CLASS 11/29

We had just finished proving:

Proposition 36.1. `(O∗
L) is a full lattice in H.

Proof. We have already seen that `(O∗
L) is a lattice in H. It is a full

lattice since it generates a R-vector space of dimension r+s−1, which
must be equal to H (since dimR H = r + s− 1). �

Theorem 36.2. Let µL be the roots of unity in L as usual. There
exist elements v1, . . . , vr+s−1 ∈ O∗

L such that every unit u ∈ O∗
L can be

written uniquely as

u = vvm1
1 · · · vmr+s−1

r+s−1

for v ∈ µL and mi ∈ Z.

Proof. Let v1, . . . , vr+s−1 have the property that `(v1), . . . , `(vr+s−1)
generate `(O∗

L) as a Z-module. Since ker ` = µL, we know that ev-
ery unit u ∈ O∗

L can be written as vz, where z is in the subgroup
generated by the v1, . . . , vr+s−1. The element z is uniquely determine
by `(u) as

vm1
1 · · · vmr+s−1

r+s−1

for some integers mi. Then v = zu−1 and is therefore also uniquely
determined. �

Let’s go through this in the case of quadratic fields Let’s look at the
case of quadratic field first. If L is an imaginary quadratic field, then
OL can be thought of as a subfield of C and N(x) = xx̄ = a2+b2, where
x = a + ib. If a2 + b2 = 1, then a + bi lies on the unit circle. We can go

a bit further and write OL ⊆ Zω where ω = 1+
√
−d

2
for some positive

squarefree d. Then any norm can be written as a2+db2

4
. In order to have

(1)
a2 + db2

4
= 1,

we must have d ≤ 4 or b = 0. When b = 0, we must have a2 = 4, so
a = ±2, which gives us the obvious units ±1. When d = 2, we cannot
solve (1) except with b = 0 and a = ±1. When d = 3, we have 4
additional solutions

±1±
√
−3

2
.

It is easy to check that that all of these are powers of ξ6, a primitive
6-th root of unity. We’ve shown then that in an imaginary quadratic
the only units are the roots of unity.
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What about real quadratics? In this case a unit x +
√

dy (d positive
and squarefree) with x, y ∈ Z is solution to Pell’s equation

x2 − dy2 = 1.

It was known in the 19th century that this has a solution other than
y = 0 and x = ±1 and that there is a fundamental solution u = x+y

√
d

such that any other nontrivial (not ±1) solution v is a power of u (so
we don’t need the Dirichlet unit theomre). Furthermore, we know that
u is not a root of unity since the only roots of unity in R are ±1. For
real quadratics, then the free rank of O∗

L is 1.
There is an interesting example in the book with cubic fields that I

will work through now. Take the ring

B = Z[
3
√

11].

Then |∆(B/Z)| = 33112. Since 113 6≡ 11 mod 32, this is a Dedekind
domain. Let’s try to calculate its class group. We end up with a
Minkowski constant of

3!

33

4

π

√
33112 < 17

so we only have to check up to 17. Let’s get rid of the ramified primes
first: over 3, we have

x3 − 11 ≡ (x3 − 2) ≡ (x− 2)3 (mod 3)

so the prime over 3 is (3, 3
√

11− 2) and N( 3
√

11− 2) = −3, so this ideal
is generated by 3

√
11− 2. Similarly at 11, we obtain

x3 − 11 ≡ x3 (mod 11),

so the ideal over 11 is (11, 3
√

11), which is obviously generated by 3
√

11.
Now, let’s start checking the other primes over 2,

x3 − 11 ≡ x3 − 1 ≡ (x− 1)(x2 + x + 1) (mod 2)

so our primes are (2, 3
√

11 − 1), which we’ll call P1, and (2, 3
√

11
2

+
3
√

11 + 1), which we’ll call P2.
Over 5, we get the same factorizaion

x3 − 11 ≡ x3 − 1 ≡ (x− 1)(x2 + x + 1) (mod 5)

so our primes are (5, 3
√

11 − 1), which we’ll call Q1, and (5, 3
√

11
2

+
3
√

11 + 1), which we’ll call Q2.
Looking at 7, the only elements with cube roots mod 7 are ±1, so

x3 − 11 is irreducible mod 7. Thus, 7B is irreducible and principal.
Similarly at 13, the only elements with cube roots are ±1, 8, and 5,

so x3−11 is irreducible mod 13. Thus 13B is irreducible and principal.



3

So we only have 4 primes to look at. Moreover [P1] = [P2]
−1 and

[Q1] = [Q2]
−1, so the class group is generated by [P2] and [Q2]. Let’s see

if we can whittle it down a little more: we see that N(Q2) exceeds the
Minkowski bound, so is in the group generated by the [P1], [Q1], [Q2].
Now, let’s look at the product Q1P1. We see that the norm of this
ideal is 10. Since N(θ − 1) = 10, this ideal must be principal, since it
is the only ideal with norm 10 in B. Thus, Cl(B) is generated by Q1.


