Math 531 Tom Tucker
NOTES FROM CLASS 11/29

We had just finished proving;:
Proposition 36.1. ¢(O3) is a full lattice in H.

Proof. We have already seen that ¢(O3) is a lattice in H. It is a full
lattice since it generates a R-vector space of dimension r + s — 1, which
must be equal to H (since dimg H =7+ s —1). O

Theorem 36.2. Let up be the roots of unity in L as usual. There
exist elements vy, ..., v15-1 € OF such that every unit v € OF can be
written uniquely as

o mi Mr4s—1
U=0Up" Uy

forv € up and m; € Z.

Proof. Let wvy,...,v,45—1 have the property that f(vy),...,0(vr4s-1)
generate ((O7) as a Z-module. Since ker{ = pp, we know that ev-
ery unit v € Oj can be written as vz, where 2z is in the subgroup
generated by the vy,...,v,45_1. The element z is uniquely determine
by ¢(u) as

o

for some integers m;. Then v = zu~! and is therefore also uniquely

determined. O

Let’s go through this in the case of quadratic fields Let’s look at the
case of quadratic field first. If L is an imaginary quadratic field, then
Oy, can be thought of as a subfield of C and N(z) = 27 = a®+b?, where
x = a+ib. If a> 4+ b? = 1, then a + bi lies on the unit circle. We can go
a bit further and write O C Zw where w = %jd for some positive

squarefree d. Then any norm can be written as “2Zdb2 . In order to have
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we must have d < 4 or b = 0. When b = 0, we must have a? = 4, so
a = £2, which gives us the obvious units 1. When d = 2, we cannot
solve (1) except with b = 0 and @ = £1. When d = 3, we have 4

additional solutions
+14++v/-3

2
It is easy to check that that all of these are powers of &, a primitive
6-th root of unity. We've shown then that in an imaginary quadratic

the only units are the roots of unity.
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What about real quadratics? In this case a unit = + vdy (d positive

and squarefree) with =,y € Z is solution to Pell’s equation
22 —dy? =1.

It was known in the 19th century that this has a solution other than
y = 0 and x = £1 and that there is a fundamental solution u = z+yv/d
such that any other nontrivial (not £1) solution v is a power of u (so
we don’t need the Dirichlet unit theomre). Furthermore, we know that
u is not a root of unity since the only roots of unity in R are +1. For
real quadratics, then the free rank of O7 is 1.

There is an interesting example in the book with cubic fields that I
will work through now. Take the ring

B =Z[V11].

Then |A(B/Z)| = 3%112. Since 113 # 11 mod 32, this is a Dedekind
domain. Let’s try to calculate its class group. We end up with a
Minkowski constant of

314
§—v33112 <17
T

so we only have to check up to 17. Let’s get rid of the ramified primes
first: over 3, we have

22 —11=(2-2)=(z—2)° (mod 3)
so the prime over 3 is (3, v/ 11 —2) and N(v/11 — 2) = —3, so this ideal
is generated by v/11 — 2. Similarly at 11, we obtain
7 —11=2" (mod 11),

so the ideal over 11 is (11, v/11), which is obviously generated by v/11.
Now, let’s start checking the other primes over 2,

P —1l=2>-1=(@—-1)(z*+2+1) (mod 2)

so our primes are (2,v/11 — 1), which we’ll call Py, and (2, VAT +
V11 + 1), which we’ll call P.
Over 5, we get the same factorizaion

?—1l=2-1=(x-1)(*+2+1) (mod5)

so our primes are (5,v/11 — 1), which we'll call Q;, and (5, \B/ﬁ2 -+
V11 + 1), which we'll call Q.
Looking at 7, the only elements with cube roots mod 7 are +1, so
2% — 11 is irreducible mod 7. Thus, 7B is irreducible and principal.
Similarly at 13, the only elements with cube roots are 1, 8, and 5,
so % — 11 is irreducible mod 13. Thus 13B is irreducible and principal.
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So we only have 4 primes to look at. Moreover [P;] = [Py]™! and
[Q1] = [Q2]71, so the class group is generated by [P,] and [Qs]. Let’s see
if we can whittle it down a little more: we see that N(Qs) exceeds the
Minkowski bound, so is in the group generated by the [P1],[Q1], [Qa]-
Now, let’s look at the product Q;P;. We see that the norm of this
ideal is 10. Since N(6 — 1) = 10, this ideal must be principal, since it
is the only ideal with norm 10 in B. Thus, Cl(B) is generated by Q;.



