Math 531 Tom Tucker NOTES FROM CLASS 11/29

We had just finished proving:

Proposition 36.1. $\ell(\mathcal{O}_L^*)$ is a full lattice in H.

Proof. We have already seen that $\ell(\mathcal{O}_L^*)$ is a lattice in H. It is a full lattice since it generates a \mathbb{R} -vector space of dimension r+s-1, which must be equal to H (since $\dim_{\mathbb{R}} H = r+s-1$). \Box

Theorem 36.2. Let μ_L be the roots of unity in L as usual. There exist elements $v_1, \ldots, v_{r+s-1} \in \mathcal{O}_L^*$ such that every unit $u \in \mathcal{O}_L^*$ can be written uniquely as

$$u = vv_1^{m_1} \cdots v_{r+s-1}^{m_{r+s-1}}$$

for $v \in \mu_L$ and $m_i \in \mathbb{Z}$.

Proof. Let v_1, \ldots, v_{r+s-1} have the property that $\ell(v_1), \ldots, \ell(v_{r+s-1})$ generate $\ell(\mathcal{O}_L^*)$ as a \mathbb{Z} -module. Since ker $\ell = \mu_L$, we know that every unit $u \in \mathcal{O}_L^*$ can be written as vz, where z is in the subgroup generated by the v_1, \ldots, v_{r+s-1} . The element z is uniquely determine by $\ell(u)$ as

$$v_1^{m_1} \cdots v_{r+s-1}^{m_{r+s-1}}$$

for some integers m_i . Then $v = zu^{-1}$ and is therefore also uniquely determined.

Let's go through this in the case of quadratic fields Let's look at the case of quadratic field first. If L is an imaginary quadratic field, then \mathcal{O}_L can be thought of as a subfield of \mathbb{C} and $N(x) = x\bar{x} = a^2 + b^2$, where x = a + ib. If $a^2 + b^2 = 1$, then a + bi lies on the unit circle. We can go a bit further and write $\mathcal{O}_L \subseteq \mathbb{Z}\omega$ where $\omega = \frac{1+\sqrt{-d}}{2}$ for some positive squarefree d. Then any norm can be written as $\frac{a^2+db^2}{4}$. In order to have

(1)
$$\frac{a^2 + db^2}{4} = 1$$

we must have $d \leq 4$ or b = 0. When b = 0, we must have $a^2 = 4$, so $a = \pm 2$, which gives us the obvious units ± 1 . When d = 2, we cannot solve (1) except with b = 0 and $a = \pm 1$. When d = 3, we have 4 additional solutions

$$\frac{\pm 1 \pm \sqrt{-3}}{2}.$$

It is easy to check that that all of these are powers of ξ_6 , a primitive 6-th root of unity. We've shown then that in an imaginary quadratic the only units are the roots of unity.

What about real quadratics? In this case a unit $x + \sqrt{dy}$ (d positive and squarefree) with $x, y \in \mathbb{Z}$ is solution to Pell's equation

$$x^2 - dy^2 = 1.$$

It was known in the 19th century that this has a solution other than y = 0 and $x = \pm 1$ and that there is a fundamental solution $u = x + y\sqrt{d}$ such that any other nontrivial (not ± 1) solution v is a power of u (so we don't need the Dirichlet unit theomre). Furthermore, we know that u is not a root of unity since the only roots of unity in \mathbb{R} are ± 1 . For real quadratics, then the free rank of \mathcal{O}_L^* is 1.

There is an interesting example in the book with cubic fields that I will work through now. Take the ring

$$B = \mathbb{Z}[\sqrt[3]{11}].$$

Then $|\Delta(B/\mathbb{Z})| = 3^3 11^2$. Since $11^3 \not\equiv 11 \mod 3^2$, this is a Dedekind domain. Let's try to calculate its class group. We end up with a Minkowski constant of

$$\frac{3!}{3^3} \frac{4}{\pi} \sqrt{3^3 11^2} < 17$$

so we only have to check up to 17. Let's get rid of the ramified primes first: over 3, we have

$$x^3 - 11 \equiv (x^3 - 2) \equiv (x - 2)^3 \pmod{3}$$

so the prime over 3 is $(3, \sqrt[3]{11} - 2)$ and $N(\sqrt[3]{11} - 2) = -3$, so this ideal is generated by $\sqrt[3]{11} - 2$. Similarly at 11, we obtain

$$x^3 - 11 \equiv x^3 \pmod{11},$$

so the ideal over 11 is $(11, \sqrt[3]{11})$, which is obviously generated by $\sqrt[3]{11}$. Now, let's start checking the other primes over 2,

$$x^{3} - 11 \equiv x^{3} - 1 \equiv (x - 1)(x^{2} + x + 1) \pmod{2}$$

so our primes are $(2, \sqrt[3]{11} - 1)$, which we'll call \mathcal{P}_1 , and $(2, \sqrt[3]{11}^2 + \sqrt[3]{11} + 1)$, which we'll call \mathcal{P}_2 .

Over 5, we get the same factorization

$$x^{3} - 11 \equiv x^{3} - 1 \equiv (x - 1)(x^{2} + x + 1) \pmod{5}$$

so our primes are $(5, \sqrt[3]{11} - 1)$, which we'll call \mathcal{Q}_1 , and $(5, \sqrt[3]{11}^2 + \sqrt[3]{11} + 1)$, which we'll call \mathcal{Q}_2 .

Looking at 7, the only elements with cube roots mod 7 are ± 1 , so $x^3 - 11$ is irreducible mod 7. Thus, 7B is irreducible and principal.

Similarly at 13, the only elements with cube roots are ± 1 , 8, and 5, so $x^3 - 11$ is irreducible mod 13. Thus 13B is irreducible and principal.

So we only have 4 primes to look at. Moreover $[\mathcal{P}_1] = [\mathcal{P}_2]^{-1}$ and $[\mathcal{Q}_1] = [\mathcal{Q}_2]^{-1}$, so the class group is generated by $[\mathcal{P}_2]$ and $[\mathcal{Q}_2]$. Let's see if we can whittle it down a little more: we see that $N(\mathcal{Q}_2)$ exceeds the Minkowski bound, so is in the group generated by the $[\mathcal{P}_1], [\mathcal{Q}_1], [\mathcal{Q}_2]$. Now, let's look at the product $\mathcal{Q}_1 \mathcal{P}_1$. We see that the norm of this ideal is 10. Since $N(\theta - 1) = 10$, this ideal must be principal, since it is the only ideal with norm 10 in B. Thus, Cl(B) is generated by \mathcal{Q}_1 .