Math 531 Tom Tucker

NOTES FROM CLASS 11/22
Recall the definition of $Z_{(t)}$ from last time...
Let (t) be an $(r+s)$-tuple of positive numbers indexed as $(t)_{i}$. We define

$$
\begin{aligned}
Z_{(t)}:= & \left\{\left(x_{1}, \ldots, x_{s+r}\right) \in \mathbb{R}^{r} \times \mathbb{C}^{s}| | x_{i} \mid \leq(t)_{i}, 1 \leq i \leq r\right. \\
& \text { and } \left.\left|x_{i}\right|^{2} \leq(t)_{i} \text { for } r+1 \leq i \leq r+s\right\}
\end{aligned}
$$

The region $Z_{(t)}$ is just a cross product of regions in \mathbb{R} and \mathbb{C}, specifically it is

$$
\begin{aligned}
& {\left[-(t)_{1},(t)_{1}\right] \times \cdots \times\left[-(t)_{r},(t)_{r}\right]} \\
& \times\left\{(x, y) \mid x^{2}+y^{2} \leq(t)_{r+1}\right\} \times \cdots \times\left\{(x, y) \mid x^{2}+y^{2} \leq(t)_{r+s}\right\}
\end{aligned}
$$

Thus,

$$
\operatorname{Vol}\left(Z_{(t)}\right)=2^{r} \pi^{s} t_{1} \cdots t_{r+s}
$$

And $Z_{(t)}$ is convex and centrally symmetric. Now, let's fix a constant T, for which

$$
2^{r} \pi^{s} T^{r+s}>2^{n} \operatorname{Vol}\left(h^{*}\left(\mathcal{O}_{L}\right)\right)
$$

and let (γ) be any n-tuple of numbers for which

$$
\gamma_{1} \cdots \gamma_{r+s}=1
$$

Then

$$
\operatorname{Vol}\left(Z_{(T \gamma)}\right)=2^{r} \pi^{s} T^{n}>2^{n} \operatorname{Vol}\left(h^{*}\left(\mathcal{O}_{L}\right)\right)
$$

so there exists a nonzero $b \in Z_{(T \gamma)} \cap h^{*}\left(\mathcal{O}_{L}\right)$, by Minkowski's lemma proven earlier. As said earlier, we want to control the signs of the logs of our units, so we will pick a particular (γ) where $\left(\gamma_{i}\right)<1$ for all but one i. Specifically, we pick a number ϵ and define

$$
\left(\epsilon_{i}\right)=\left\{\begin{array}{rll}
\epsilon & : & j \neq i \\
1 / \epsilon^{r+s-1} & : & j=i
\end{array}\right.
$$

As above, we know that there is a nonzero element of $h^{*}\left(\mathcal{O}_{L}\right)$ in $Z_{\left(T \epsilon_{i}\right)}$, call it b_{i}. The following Lemma is obvious. We state it to organize our exposition.

Proposition 34.1. Let $b_{i} \in Z_{\left(T \epsilon_{i}\right)} \cap h^{*}\left(\mathcal{O}_{L}\right)$ with $b_{i} \neq 0$. Then

$$
\left|\mathrm{N}\left(b_{i}\right)\right| \leq T_{1}^{s+r}
$$

Proof. Recall of course that $p_{j}\left(h^{*}(b)\right)=\sigma_{j}(b)$, so if $h^{*}(b) \in Z_{\left(T \epsilon_{i}\right)}$, then $\left|\sigma_{j}(b)\right| \leq\left(T \epsilon_{i}\right)_{j}$ for $1 \leq j \leq r$ and $\left|\sigma_{j}(b)\right|^{2} \leq\left(T \epsilon_{i}\right)_{j}$ for $r+1 \leq j \leq$ $(s+r)$. Thus, for $b_{i} \in Z_{\left(T \epsilon_{i}\right)}$, we have

$$
\left|\mathrm{N}\left(b_{i}\right)\right| \leq \prod_{j=1}^{r}\left|\sigma_{j}(b)\right| \prod_{j=r+1}^{s+r}\left|\sigma_{j}(b)\right|^{2} \leq \prod_{j=1}^{r+s}\left(T \epsilon_{i}\right)_{j}=T^{r+s} .
$$

Unfortunately, the b_{i} are not units. However, we need only modify them slightly to obtain units. There are only finitely many nonzero principal ideals in \mathcal{O}_{L} with norm less than T^{r+s} (since there are finitely many ideals in \mathcal{O}_{L} of bounded norm). Let us number them as I_{1}, \ldots, I_{N}, write $I_{k}=\mathcal{O}_{L} a_{k}$, for $a_{k} \in \mathcal{O}_{L}$ and pick $\epsilon>0$ such that

$$
0<\epsilon T<\min \left\{\left|\sigma_{i}\left(a_{k}\right)\right|^{e_{i}}, i=1, \ldots, r+s, k=1, \ldots, N\right\},
$$

where $e_{i}=1$ if σ_{i} is a real place and $e_{i}=2$ is σ_{i} is complex place. Note that this min cannot be zero because $a_{k} \neq 0$ and σ_{i} is injective. For each $i=1, \ldots, r+s$, let $Z_{\left(T \epsilon_{i}\right)}$ and b_{i} be as in the Proposition above. Since $\mathrm{N}\left(\mathcal{O}_{L} b_{i}\right) \leq T^{r+s}$, the ideal $\mathcal{O}_{L} b_{i}$ is equal to some $\mathcal{O}_{L} a_{k(i)}$. Let $u_{i}=a_{k(i)} / b_{i}$. Then, u_{i} must be a unit since b_{i} divides $a_{k(i)}$ and $a_{k(i)}$ divides b_{i}.

Proposition 34.2. Let u_{i} be as above. Then
(1) $\sum_{j=1}^{r} \log \left|\sigma_{j}\left(u_{i}\right)\right|+\sum_{j=r+1}^{r+s} 2 \log \left|\sigma_{j}\left(u_{i}\right)\right|=0$
(2) $\log \left|\sigma_{j}\left(u_{i}\right)\right|<0$ for $j \neq i$
(3) $\log \left|\sigma_{i}\left(u_{i}\right)\right|>0$.

Proof. (1): This is easy since $\left|\mathrm{N}\left(u_{i}\right)\right|=1$, so

$$
0=\log 1=\log \left|\mathrm{N}\left(u_{i}\right)\right|=\sum_{j=1}^{r} \log \left|\sigma_{j}\left(u_{i}\right)\right|+\sum_{j=r+1}^{r+s} 2 \log \left|\sigma_{j}\left(u_{i}\right)\right|=0
$$

(2): Recall that $T \epsilon<\mid \sigma_{j}\left(a_{i(k)}^{e_{j}} \mid\right.$, so

$$
\log \left|\sigma_{j}\left(u_{i}\right)^{e_{i}}\right|=\log \frac{\left|\sigma_{j}\left(b_{i}\right)^{e_{i}}\right|}{\left|\sigma_{j}\left(a_{i(k)}\right)^{e_{i}}\right|}<\log \frac{T \epsilon}{\left|\sigma_{j}\left(a_{i(k)}\right)\right|^{e_{i}}}<\log 1=0
$$

Thus, $\log \left|\sigma_{j}\left(u_{i}\right)\right|=\frac{1}{2} \log \left|\sigma_{j}\left(u_{i}\right)^{e_{i}}\right|<0$ as well.
(3): Follows immediately from (1) and (2)

Proposition 34.3. The elements $\ell\left(u_{i}\right), i=1, \ldots r+s-1$ (note we don't go up all the way to $r+s$) are linearly independent over \mathbb{R}.

Proof. Let $m_{i j}=\log \left|\sigma_{j}\left(u_{i}\right)\right|$ for $1 \leq i \leq r$ and $m_{i j}=2 \log \left|\sigma_{j}\left(u_{i}\right)\right|$ for $r+1 \leq i \leq r+s-1$. Since

$$
\sum_{j=1}^{r} \log \left|\sigma_{j}\left(u_{i}\right)\right|+\sum_{j=r+1}^{r+s} 2 \log \left|\sigma_{j}\left(u_{i}\right)\right|=0
$$

the $\log \left|\sigma_{r+s}\left(u_{j}\right)\right|$ is determined by the other $\log \left|\sigma_{j}\left(u_{i}\right)\right|$; that is why we only go up to $r+s-1$. To show that the $\ell\left(u_{i}\right)$ are linearly independent, it will suffice to show that the matrix $\left[m_{i j}\right]$ is nonsingular. It follows from Proposition 34.2 that for any i, we have

$$
\sum_{j=1}^{r+s-1} m_{i j}>0
$$

It also follows that $m_{i j}<0$ for $i \neq j$ and $m_{j j}>0$ for any j.
The embeddings of a fixed u_{i} gives us the i-th row of $\left[m_{i j}\right]$; it will be easier to show that the columns are linearly independent over \mathbb{R}. Suppose that we have a set a_{1}, \ldots, a_{r+s-1} of real numbers, not all of which are zero. We can show that there is some i such that

$$
\sum_{j=1}^{r+s-1} a_{j} m_{i j} \neq 0
$$

Indeed, let us pick i so that $\left|a_{i}\right| \geq\left|a_{j}\right|$ for for all j; we may assume that $a_{i}>0$ since multiplying everything though by -1 will not affect whether or not a sum is nonzero. Then we $a_{i} \geq a_{j}$ for every j and (since $m_{i j}<0$ for $i \neq j$) we have

$$
\sum_{j=1}^{r+s-1} a_{j} m_{i j} \geq a_{i} m_{i i}+\sum_{j \neq i} a_{i} m_{i j} \geq a_{i} \sum_{j=1}^{r+s-1} m_{i j}>0
$$

and we are done.
Corollary 34.4. $\ell\left(\mathcal{O}_{L}^{*}\right)$ is a full lattice in H.
Proof. We have already seen that $\ell\left(\mathcal{O}_{L}^{*}\right)$ is a lattice in H. It is a full lattice since it generates a \mathbb{R}-vector space of dimension $r+s-1$, which must be equal to H (since $\operatorname{dim}_{\mathbb{R}} H=r+s-1$).

Theorem 34.5 (Dirichlet Unit Theorem). Let μ_{L} be the roots of unity in L. There exist elements $v_{1}, \ldots, v_{r+s-1} \in \mathcal{O}_{L}^{*}$ such that every unit $u \in \mathcal{O}_{L}^{*}$ can be written uniquely as

$$
u=v v_{1}^{m_{1}} \cdots v_{r+s-1}^{m_{r+s-1}}
$$

for $v \in \mu_{L}$ and $m_{i} \in \mathbb{Z}$.

Proof. Let v_{1}, \ldots, v_{r+s-1} have the property that $\ell\left(v_{1}\right), \ldots, \ell\left(v_{r+s-1}\right)$ generate $\ell\left(\mathcal{O}_{L}^{*}\right)$ as a \mathbb{Z}-module. Since $\operatorname{ker} \ell=\mu_{L}$, we know that every unit $u \in \mathcal{O}_{L}^{*}$ can be written as $v z$, where z is in the subgroup generated by the v_{1}, \ldots, v_{r+s-1}. The element z is uniquely determine by $\ell(u)$ as

$$
v_{1}^{m_{1}} \cdots v_{r+s-1}^{m_{r+s-1}}
$$

for some integers m_{i}. Then $v=z u^{-1}$ and is therefore also uniquely determined.

