Math 531 Tom Tucker NOTES FROM CLASS 11/19

Next, we will show that $\ell(\mathcal{O}_L^*)$ is a sublattice in \mathbb{R}^{r+s} . We define a sublattice is a subgroup of \mathbb{R}^m that has \mathbb{Z} -rank equal to the \mathbb{R} -dimension of the vector space it generates.

We were in the middle of proving the following.

Proposition 33.1. Let \mathcal{L} be a finitely generated subgroup of \mathbb{R}^m . Then \mathcal{L} is a sublattice if and only if every bounded region in \mathbb{R}^m contains at most finitely many elements of \mathcal{L} .

Proof. Note, we already proved the "only if" part last week during our proof of the finiteness of the class group.

We will prove the "if" part by induction on m. If m = 1 and $\mathcal{L} \neq 0$ (0 is trivially a sublattice), then $\mathbb{R}^m = \mathbb{R}$, and we choose u to be the smallest positive number in \mathcal{L} . Then, for any $v \in \mathcal{L}$, we can write v = tu + z where t is an integer and $0 \leq z < u$. But, since z = v - tu, we must have $z \in \mathcal{L}$, which means that z = 0 by the minimality of u. Thus, u must generate \mathcal{L} as a \mathbb{Z} -module, so the rank of \mathcal{L} as a group is equal to 1.

Now, we do the inductive step. Note that we may assume \mathcal{L} generates \mathbb{R}^m as a vector space, since otherwise it is contained in a vector space of dimension \mathbb{R}^{m-1} and we are done by the inductive hypothesis. Thus, we can choose \mathbb{R} -linearly independent elements v_1, \ldots, v_m of \mathcal{L} . By the inductive hypothesis, if V_0 is the \mathbb{R} -vector space generated by v_1, \ldots, v_{m-1} , then $\mathcal{L}_0 := V_0 \cap \mathcal{L}$ is a sublattice, and is a full lattice in V_0 . Let w_1, \ldots, w_{m-1} be a basis for \mathcal{L}_0 (as a \mathbb{Z} -module). Then, $w_1, \ldots, w_{m-1}, v_m$ is a basis for \mathbb{R}^m , so any element of $\lambda \in \mathcal{L}$ can be written as

$$\lambda = \sum_{i=1}^{m-1} r_i w_i + r_m v_m$$

for real numbers r_i . Note that if $r_m = 0$, then $\lambda \in \mathcal{L}_0$, and we can choose all of the r_i to be integers. Note also that by subtracting off an appropriate element of \mathcal{L}_0 , we obtain such a λ with all $0 \leq r_i < 1$ for $i \leq (m-1)$. There are only finitely many such λ with r_m also smaller than a certain bound (since any bounded region in \mathbb{R}^m intersects \mathcal{L} in finitely many points). Thus, there is a nonzero element λ' with $0 \leq r_i < 1$, for $i = 1, \ldots, m-1$ and $r_m > 0$ minimal (if $r_m = 0$, then the other r_i must be integers, we recall). I claim that $w_1, \ldots, w_{m-1}, \lambda'$ must be a \mathbb{Z} -basis for \mathcal{L} . Indeed, if we pick any element $\eta \in \mathcal{L}$ and $\mathbf{2}$

$$\eta = \sum_{i=1}^{m-1} a_i w_i + a_m v_m$$

with $a_i \in \mathbb{R}$. Then by writing

$$a_m = tr_m + z$$

with $t \in \mathbb{Z}$ and $0 \leq z < r_m$ and subtracting

$$\sum_{i=1}^{m-1} ([a_i - r_i t])w_i + t\lambda'$$

from η we obtain an element of \mathcal{L} written as

$$\sum_{i=1}^{m-1} ((a_i - r_i t) - [a_i - r_i t])w_i + zv_m$$

with $0 \le z < a_m$. Thus, we must have z = 0 and

$$\eta - t\lambda' \in \mathcal{L}_O$$

and we are done.

Let's define some notation now. For a finitely generated abelian group G we define $\operatorname{rk}(G)$ to be the free rank of G. Let's also define Hto be the hyperplane $x_1 + \ldots x_{s+r} = 0$ in \mathbb{R}^{s+r} .

Proposition 33.2. $\ell(\mathcal{O}_L^*)$ is a sublattice in H.

Proof. Any bounded region in \mathbb{R}^{s+r} is contained in a set Y_C consisting of all (x_1, \ldots, x_{r+s}) with $|x_i| \leq C$ for $C \geq 0$. For $b \in \mathcal{O}_L^*$, the absolute value of the *i*-th coordinate of $\ell(b)$ is less than or equal to C only if $|\sigma_i(b)| \leq e^C$ for all *i*. There are only finitely many such *b* by a Lemma from last time. \Box

Corollary 33.3.

$$\operatorname{rk}(\mathcal{O}_L^*) \le (r+s-1)$$

Proof. Since the kernel of ℓ is finite,

$$\operatorname{rk}(\mathcal{O}_L^*) = \operatorname{rk}(\ell(\mathcal{O}_L^*)).$$

From the previous Proposition we know that $\ell(\mathcal{O}_L^*)$ is sublattice in a vector space of dimension s + r - 1, so it must have \mathbb{Z} -rank at most s + r - 1.

We're going to want use another embedding of \mathcal{O}_L into an \mathbb{R} -vector space. This embedding, which we denote as h^* is almost exactly like the embedding h that we used earlier. It is

$$h^*(b) = (\sigma_1(b), \ldots, \sigma_r(b), \sigma_{r+1}(b), \ldots, \sigma_{r+s}(b)).$$

Note that is very similar to the embedding h used earlier. In fact, we can choose the \mathbb{R} -basis $x_1, \ldots, x_r, y_1, z_1, \ldots, y_s, z_1, \ldots, z_s$, where x_j is the element with j-th coordinate equal to 1 and all other coordinates equal to 0, y_j to be the the element with (r + j)-th element equal to 1 and all other coordinates equal to 0, and z_j to be the the element with (r+j)-th element equal to 1. Then h is exactly the same with respect to its usual basis for V as h^* is with respect to the basis

$$x_1,\ldots,x_r,y_1,\ldots,y_s,z_1,\ldots,z_s.$$

If we give $\mathbb{R}^r \times \mathbb{C}^s$ the volume form associated to this basis, then

$$\operatorname{Vol}(h^*(\mathcal{O}_L)) = \operatorname{Vol}(h(\mathcal{O}_L)) = 2^{-s} \sqrt{\Delta(L/K)}$$

In particular, $h^*(\mathcal{O}_L)$ is a full lattice in $\mathbb{R}^r \times \mathbb{C}^s$ (if it had \mathbb{R} -rank less than n, the volume would be 0).

The advantage of working with h^* is that ℓ is that if we denote as p_j projection onto the *j*-th coordinate (for $\mathbb{R}^r \times \mathbb{C}^s$). then

$$p_j(\ell(b)) = \log |p_j(h^*(b))|$$

for $1 \leq j \leq r$ and

$$p_j(\ell(b)) = 2\log|p_j(h^*(b))|$$

for $r+1 \leq j \leq r+s$.

We have already established that $h^*(\mathcal{O}_L)$ is a lattice so we should be able to find elements in it with certain properties. The idea roughly is this: we want to find a family of units u_i in $h^*(\mathcal{O}_L)$ for which we can control the \pm sign of $\log |p_j(h^*(b))|$ for various j. We might hope that these units are linearly independent.

We will work with a region somewhat similar to the region we worked on when we were doing the finiteness of the class group. We define the region as follows. Let (t) be an (r+s)-tuple of positive numbers indexed as $(t)_i$. We define

$$Z_{(t)} := \{ (x_1, \dots, x_{s+r}) \in \mathbb{R}^r \times \mathbb{C}^s \mid |x_i| \le (t)_i, 1 \le i \le r \\ \text{and } |x_i|^2 \le (t)_i \text{ for } r+1 \le i \le r+s \}$$

The region $Z_{(t)}$ is just a cross product of regions in \mathbb{R} and \mathbb{C} , specifically it is

 $[-(t)_1, (t)_1] \times \dots \times [-(t)_r, (t)_r] \\ \times \{(x, y) \mid x^2 + y^2 \le (t)_{r+1}^2\} \times \dots \times \{(x, y) \mid x^2 + y^2 \le (t)_{r+s}\}.$ Thus,

$$\operatorname{Vol}(Z_{(t)}) = 2^r \pi^s t_1 \cdots t_{r+s}$$

4