
Math 531 Tom Tucker
NOTES FROM CLASS 11/17

Throughout, L is as usual degree n over Q, h : L −→ V is the usual
embedding, r is the number of real places of L and s = (n−r)/2. Also,
N is NL/Q.

Question: Are there any nontrivial extensions of Q that don’t ramify
anywhere? Since |∆(L/Q)| is a positive integer and the only positive
integer that isn’t divisible by any primes is 1, this is the same as asking
whether or not there are any extensions with |∆(L/Q)| = 1. Now, recall
that we know that every nonzero ideal I ⊆ OL has norm equal to at
least 1. Looking at the Minkowski bound, we know that any ideal class
contains an ideal with norm at most
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Since 2s+r = n for some integer r ≥ 0, we know that s ≤ [n/2] (where
[·] is the greatest integer function). Now, we can write
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(3/4)[n/2] > 2[n/2](3/4)[n/2] > 1,

for n ≥ 2, so for L 6= Q, we have√
∆(L/Q) > 1

so there is some p dividing
√

∆(L/Q), so L ramifies at some prime. On
the other hand, many quadratic fields do have unramified extensions.
In fact, Q[

√
d] for square-free d has an unramified extension whenever

d is composite (see homework).
*********************************************************

Unit groups of rings of integers. As usual, L is a finite extension of Q
with ring of integers OL and norm N = NL/Q. We want to find out
what the group of unit O∗

L looks like. First a simple proposition on
units.

Proposition 32.1. Let y ∈ OL. Then y is a unit if ⇔ if N(y) = 1.

Proof. (⇒) If y is a unit then xy = 1 for some x ∈ OL. Then
N(x) N(y) = 1. Since N(x) and N(y) are both integers, this means
that N(y) = ±1.

(⇐) It will suffice to show that N(y)
y

is in OL. Since N(y)
y

is a product of
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conjugates of y, it must be integral over Z. Moroever, since N(y) and

y are in L, their quotient N(y)
y

must be as well. Thus N(y)
y
∈ OL. �

In general, here is what we’ll do:
As usual, let n be the degree of L over Q and let σ1, . . . , σr be the real
embeddings of L into C with σr+1, σr+2, σn−1, σn the complex embed-
dings. Let’s reorder the complex embeddings so that σr+i+s = σr+i for
odd r < i ≤ s. For b ∈ OL, we define

`(b) = (log |σ1(b)|, . . . , log |σr(b)|, log |σr+1(b)|2, log |σr+2(b)|2,
. . . , |σr+s(b)|2)

= (log |σ1(b)|, . . . , log |σ1(b)|, 2 log |σr+1(b)|, 2 log |σr+2(b)|, . . . , 2|σr+s(b)|)

Since

log |N(b)| = log |σ1(b)|+ · · ·+ log |σ1(b)|
+ 2 log |σr+1(b)|+ 2 log |σr+2(b)|+ · · ·+ 2|σr+s(b)|

and log |N(b)| = 0 if and only if b is a unit, we see that ` sends OL

into the hyperplane in Rs+r consisting of elements with coordinates
(x1, . . . , xr+1) for which

x1 + · · ·+ xn = 0.

We might ask what the kernel of ` is. First, a Lemma.

Lemma 32.2. For any constant C, there are finitely many b ∈ OL

such that |σi(b)| ≤ C for each σi.

Proof. To see this, we use the map we used in the finiteness of the class
group h : L −→ Rn (with the old numbering of the embeddings σ)
defined by

h(b) = (σ1(b), . . . , σr(b),<(σr+1(b)),=(σr+1(b)),

. . . ,<(σr+2(s−1)(b)),=(σr+2(s−1)(b))).

Note that h is injective, since each σi is injective. It is clear that if
|σi(b)| ≤ C, for all i, then the coordinates of h(b) must all be less than
or equal to 1. Hence all h(b) with |σi(b)| ≤ C for each embedding
σi are contained in a bounded region of Rn. Since h(OL) intersects a
bounded region in finitely many points. Hence there are finitely many
b such that |σi(b)| ≤ C for each embedding σi. �

Proposition 32.3. The kernel of ` is finite and is equal to the roots
of unity of L.
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Proof. Suppose that `(b) = (0, . . . , 0). Then |σi(b)| = 1 for each em-
bedding σi. From the Lemma above are finitely many such b. Now, if
|σi(b)| = 1 for each embedding σi, then |σi(b

n)| = 1 for each embedding
σi. Thus, the group generated by any such b much be finite. Hence, b
must be a root of unity. Finally, it is easy to see that any root of unity
is integral (we saw this earlier when we studied cyclotomic fields), so
all the roots of unity in L are in OL. �

Next, we will show that `(O∗
L) is a sublattice in Rr+s. We define a

sublattice is a subgroup of Rm that has Z-rank equal to the R-dimension
of the vector space it generates.

Proposition 32.4. Let L be a finitely generated subgroup of Rm. Then
L is a sublattice if and only if every bounded region in Rm contains at
most finitely many elements of L.

Proof. Note, we already proved the “only if” part last week during our
proof of the finiteness of the class group.

We will prove the “if” part by induction on m. If m = 1 and L 6= 0
(0 is trivially a sublattice), then Rm = R, and we choose u to be the
smallest positive number in L. Then, for any v ∈ L, we can write
v = tu + z where t is an integer and 0 ≤ z < u. But, since z = v − tu,
we must have z ∈ L, which means that z = 0 by the minimality of u.
Thus, u must generate L as a Z-module, so the rank of L as a group
is equal to 1.

We’ll do the inductive step next time. �


