Math 531 Tom Tucker NOTES FROM CLASS 11/15

Theorem 31.1. Let $I \subset \mathcal{O}_L$ be any fractional ideal of \mathcal{O}_L . Then there exists an ideal $J \subset \mathcal{O}_L$ in the same ideal class as I such that

$$|\operatorname{N}_{L/\mathbb{Q}}(J))| \leq \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \operatorname{N}_{L/\mathbb{Q}}(I) \sqrt{\Delta(\mathcal{O}_L/\mathbb{Z})}.$$

Proof. Applying the previous theorem to I^{-1} , we find that there is an element $a \in I^{-1}$ such that

$$|\mathcal{N}_{L/\mathbb{Q}}(a)| \leq \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{\Delta(\mathcal{O}_L/\mathbb{Z})} \mathcal{N}(I)^{-1}.$$

Let J = aI. Since $a \in I^{-1}$, we see that

$$aI = a(I^{-1})^{-1} \subset \mathcal{O}_L$$

We also have

$$N(aI) \leq \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{\Delta(\mathcal{O}_L/\mathbb{Z})} N(I)^{-1} N(I) = \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{\Delta(\mathcal{O}_L/\mathbb{Z})},$$

so we are done.

so we are done.

Corollary 31.2. $|\operatorname{Cl}(\mathcal{O}_L)|$ is finite.

Proof. There are finitely many ideals in \mathcal{O}_L of bounded norm.

Example 31.3. $|\operatorname{Cl}(\mathbb{Z}[\sqrt{-13}])| = 2$. We check the Minkowski bound and find it to be smaller than 5:

$$(1/2)(4/\pi)2\sqrt{13} < 5.$$

So we only need to check at 2 and 3. Let's see what happens at 2:

$$x^{2} + 13 \equiv x^{2} + 1 \pmod{2} \equiv (x+1)^{2} \pmod{2}$$

Let $\mathcal{P} = (\sqrt{-13} + 1, 2)$. I claim it isn't principal. To start with, we see that 2 is irreducible in $\mathbb{Z}[\sqrt{-13}]$. If it weren't irreducible, we could write xy = 2 with x, y not units. Let N denote $N_{\mathbb{Q}(\sqrt{-13})/\mathbb{Q}}$. This would mean that N(x) N(y) = N(2) = 4. Since x and y are not units, we cannot have N(x) or N(y) equal to 2. But there are no a and b with $a^2 + 13b^2 = 2$, so this is impossible. Thus, the only possible generator for the ideal \mathcal{P} is 2. But $2 \nmid (\sqrt{-13} + 1)$, so 2 cannot generate this ideal. In fact, we already know that $\mathcal{P}^2 = 2$, so 2 cannot generate this ideal. Hence $[\mathcal{P}] \neq 1$, where $[\mathcal{P}]$ is the ideal class of \mathcal{P} . Since $\mathcal{P}^2 = (2)$, we know that $[\mathcal{P}]^2 = 1$.

Let's look over 3 now:

$$x^2 + 13 \equiv x^2 + 1 \pmod{3}$$

which is irreducible, so $3\mathbb{Z}[\sqrt{-13}]$ is the only prime lying over 3. Thus, $\operatorname{Cl}(\mathbb{Z}[\sqrt{-13}])$ is generated by $[\mathcal{P}]$ above and thus has order 2.

Example 31.4.

$$|\operatorname{Cl}(\mathbb{Z}[\frac{1+\sqrt{-35}}{2}])| = 2$$

Let

$$\omega = \frac{1 + \sqrt{-35}}{2}.$$

Then ω has minimal polynomial $x^2 - x + 9$ The discriminant in this case is 35, so we must ramify over 5. This means that we can write the minimal polynomial as $(x - \bar{a})^2 \pmod{5}$ where \bar{a} is some congruence class mod 5. In fact, we calculate that $x^2 - x + 9 = (x - 3)^2 \pmod{5}$. So the prime \mathcal{P} lying over 5 is $(\omega - 3, 5)$. We see that 5 is irreducible in $\mathbb{Z}[\omega]$ since xy = 5 for x and y nonunits implies N(x)N(y) = 25which implies that N(x) = 5 (norms are always positive in imaginary quadratics). This can happen only if $\frac{a^2 + 35b^2}{4} = 5$ which means that $a^2 + 35b^2 = 20$, which is impossible. Since 5 is irreducible but $5\mathbb{Z}[\omega]$ is \mathcal{P}^2 and not prime, \mathcal{P} cannot be principal. Hence $\mathbb{Z}[\omega]$ cannot have class number 1. Since $\mathcal{P}^2 = (5)$ is principal we see that $\mathcal{P}^2 = 1$. Thus, the order of $|\operatorname{Cl}(\mathbb{Z}[\frac{1+\sqrt{-35}}{2}])|$ is divisible by 2.

Now, we look at the Minkowski bound. We get $(1/2)(4/\pi)\sqrt{35}$ which is less than 5, so we need only check the primes over 2 and 3. Over 2, the polynomial becomes $x^2 + x + 1$ which is irreducible, so we need only check over 3. Over 3, our polynomial becomes x(x - 1). So we have two primes $\mathcal{Q} = (\omega, 2)$ and $\mathcal{Q}' = (\omega - 1, 2)$. We know that \mathcal{Q}' is the inverse of \mathcal{Q} in the class group since $\mathcal{Q}\mathcal{Q}' = (2)$. Now, \mathcal{Q}^2 has norm equal to 9, so it must be in the same ideal class as \mathcal{Q} , \mathcal{Q}' or (2). If \mathcal{Q}^2 is in the same class group as \mathcal{Q} , then it is \mathcal{Q} is principal and the class group is trivial, which we know isn't true. If \mathcal{Q}^2 is in the same class group as \mathcal{Q}' , then \mathcal{Q} has order 3 in the class group, which is impossible since we know that \mathcal{Q} generates the class group and the class group has even order. Thus, we must have $\mathcal{Q}^2 = 1$ in the class group, so

$$|\operatorname{Cl}(\mathbb{Z}[\frac{1+\sqrt{-35}}{2}])| = 2.$$

Example 31.5. $|\operatorname{Cl}(\mathbb{Z}[\frac{\sqrt{-43}+1}{2}])| = 1$. Plugging into the Minkowski bound, we get

$$(1/2)(4/\pi)\sqrt{43} \le (1/2)(4/3)7 < 5,$$

 $\mathbf{2}$

so we only need to look at 2 and 3. The minimal polynomial for

$$\omega = \frac{\sqrt{-43} + 1}{2}$$

is $x^2 - x + 11$. Over 2, we get:

$$x^2 - x + 11 \equiv x^2 - x + 1 \pmod{2}$$

which is irreducible, so $2\mathbb{Z}[\omega]$ is prime. Over 3, we get

$$x^2 - x + 11 \equiv x^2 - x + 2 \pmod{3}$$

which has no roots (try 0,1,2) in $\mathbb{Z}/3\mathbb{Z}$, so is irreducible. Thus, $3\mathbb{Z}[\omega]$ is prime and principal. Now, we're done.

Note: it is generally easier to work in imaginary quadratics since the norms are easier to control. There are lots of real fields we can do as well, though.

Example 31.6.
$$|\operatorname{Cl}(\mathbb{Z}[\frac{\sqrt{13}+1}{2}])| = 1$$
. Plugging into Minkowski, we get $(1/2)\sqrt{13} < 2$

so we must have class number 1.