Math 531 Tom Tucker
NOTES FROM CLASS 11/15

Theorem 31.1. Let I C Oy, be any fractional ideal of Or. Then there
exists an ideal J C Oy in the same ideal class as I such that
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Proof. Applying the previous theorem to =1, we find that there is an
element a € 1! such that
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Let J = al. Since a € 17!, we see that
al =a(I™")™t C Oy
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so we are done. O
Corollary 31.2. |C1(Oy)] is finite.
Proof. There are finitely many ideals in Op, of bounded norm. U

Example 31.3. |Cl(Z[v—13])| = 2. We check the Minkowski bound
and find it to be smaller than 5:

(1/2)(4/7)2V13 < 5.
So we only need to check at 2 and 3. Let’s see what happens at 2:
2?4+ 13=2>+1 (mod2)=(r+1)*> (mod 2).

Let P = (vV—13+1,2). I claim it isn’t principal. To start with, we
see that 2 is irreducible in Z[v/—13|. If it weren’t irreducible, we could
write zy = 2 with z, y not units. Let N denote N, =13 /9. This would
mean that N(z)N(y) = N(2) = 4. Since z and y are not units, we
cannot have N(z) or N(y) equal to 2. But there are no a and b with
a? + 13b? = 2, so this is impossible. Thus, the only possible generator
for the ideal P is 2. But 2 { (v/—13 4+ 1), so 2 cannot generate this
ideal. In fact, we already know that P2 = 2, so 2 cannot generate this
ideal. Hence [P] # 1, where [P] is the ideal class of P. Since P? = (2),
we know that [P]? = 1.
Let’s look over 3 now:
P +13=2"+1 (mod 3)
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which is irreducible, so 3Z[v/—13] is the only prime lying over 3. Thus,
Cl(Z[v/—13]) is generated by [P] above and thus has order 2.

Example 31.4.
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Then w has minimal polynomial 2> — z + 9 The discriminant in this
case is 35, so we must ramify over 5. This means that we can write the
minimal polynomial as (z — a)? (mod 5) where a is some congruence
class mod 5. In fact, we calculate that 22 —z +9 = (z — 3)? (mod 5).
So the prime P lying over 5 is (w — 3,5). We see that 5 is irreducible
in Zlw] since zy = 5 for  and y nonunits implies N(z) N(y) = 25
which implies that N(z) = 5 (norms are always positive in imaginary
quadratics). This can happen only if @ = 5 which means that
a® + 35b* = 20, which is impossible. Since 5 is irreducible but 5Z[w]
is P? and not prime, P cannot be principal. Hence Z[w] cannot have
class number 1. Since P? = (5) is principal we see that P? = 1. Thus,
the order of | CI(Z[*4=2])| is divisible by 2.

Now, we look at the Minkowski bound. We get (1/2)(4/7)+/35 which
is less than 5, so we need only check the primes over 2 and 3. Over
2, the polynomial becomes 22 + x + 1 which is irreducible, so we need
only check over 3. Over 3, our polynomial becomes z(z — 1). So we
have two primes Q = (w,2) and Q" = (w — 1,2). We know that Q' is
the inverse of Q in the class group since QQ’ = (2). Now, Q? has norm
equal to 9, so it must be in the same ideal class as Q, Q' or (2). If Q2
is in the same class group as @, then it is Q is principal and the class
group is trivial, which we know isn’t true. If Q2 is in the same class
group as @', then Q has order 3 in the class group, which is impossible
since we know that Q generates the class group and the class group
has even order. Thus, we must have Q? = 1 in the class group, so

a2 =0,
Example 31.5. ]CI(Z[@M = 1. Plugging into the Minkowski
bound, we get

(1/2)(4/)VA3 < (1/2)(4/3)7 < 5,



so we only need to look at 2 and 3. The minimal polynomial for
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is 22 — 2 + 11. Over 2, we get:

P —z+1l=2>—x+1 (mod2)
which is irreducible, so 2Z[w] is prime. Over 3, we get

P —z+11=2>—2+2 (mod3)
which has no roots (try 0,1,2) in Z/3Z, so is irreducible. Thus, 3Z[w]

is prime and principal. Now, we’re done.

Note: it is generally easier to work in imaginary quadratics since the
norms are easier to control. There are lots of real fields we can do as
well, though.

Example 31.6. |CI(Z[@])| = 1. Plugging into Minkowski, we get

(1/2)V13 < 2

so we must have class number 1.



