
Math 531 Tom Tucker
NOTES FROM CLASS 11/12

Throughout, L is as usual degree n over Q, h : L −→ V is the usual
embedding, r is the number of real places of L and s = (n−r)/2. Also,
N is NL/Q.

Proposition 30.1.

Vol(Xt) =
2r−sπstn

n!
.

Proof. The proof of this is in the book on p. 66. The last step in the
calculation is integration by parts, which the book neglects to mention.

�

Lemma 30.2. Let U be any bounded region of V and let L be a full
lattice in V . Then L ∩ U is finite.

Proof. Let w1, . . . , wn be a basis for L and let x1, . . . , xn be the basis for
V that gives the volume form. If M is the matrix given by Mxi = wi,
then for any integers mi we have

|
n∑

i=1

miwi|2 = |M(
n∑

i=1

mixi)|2 ≥
n∑

i=1

m2
i ‖M‖2

inf

where ‖M‖inf is the minimum value of |M(y)| for y on the unit sphere
centered at the origin (which is nonzero). For any constant C there are
finitely many integers mi such that

n∑
i=1

m2
i ‖M‖2

inf ≤ C2

so there are finitely many elements of λ in the sphere of radius C
centered at the origin. Any bounded region is contained in such a
sphere, so we are done. �

Theorem 30.3. Let I be a nonzero fractional ideal of OL. Then there
exists a 6= 0 such that

|NL/Q(a)| ≤ n!

nn

(
4

π

)s √
∆(OL//bZ) NL/Q(I).

Proof. We want to choose Xt to which we can apply Minkowski’s the-
orem and produce an element of Xt ∩ h(I). Recall that

Vol(h(I)) =
1

2s

√
∆(OL/Z) N(I),

so we need t with

2r−sπstn

n!
> 2n 1

2s

√
∆(OL/Z) N(I),

1



2

which is equivalent to

t >
n

√
n!

1

πs
2n−s−r+s

√
∆(OL/Z) N(I) = n

√
n!

(
4

π

)s √
∆(OL/Z) N(I),

so let

C := n

√
n!

(
4

pi

)s √
∆(OL/Z) N(I).

Then Vol(XC+ε) > Vol(h(I)) for any ε > 0. It follows that XC+ε ∩
h(I) 6= 0 by Minkowski’s theorem. If

XC+ε ∩ h(I) = XC ∩ h(I),

then XC ∩h(I) 6= 0. Otherwise, let ε′ > 0 be the smallest number such
that

XC+ε ∩ h(I) 6= XC ∩ h(I).

Such a number exists since XC+ε∩h(I) is finite and any finite noempty
set has a minimal element. Taking 0 < δ < ε′, we see that

XC ∩ h(I) = XC+δ ∩ h(I) 6= 0,

so there is a nonzero element a ∈ XC ∩h(I). From earlier work, we see
that

N(a) ≤ (C/n)n =
n!

nn

(
4

pi

)s √
∆(OL/Z) N(I).

�

Let’s do an easy lemma.

Lemma 30.4. Let I be a fractional ideal of a Dedekind domain A and
let a 6= 0 be in I. Then aI−1 ⊆ A.

Proof. Since Aa ⊆ I, we have

I−1Aa ⊆ II−1 = A.

�

Theorem 30.5. Let I ⊂ OL be any fractional ideal of OL. Then there
exists an ideal J ⊂ OL in the same ideal class as I such that

|NL/Q(J))| ≤ n!

nn

(
4

π

)s

NL/Q(I)
√

∆(OL//bZ).

Proof. Applying the previous theorem to I−1, we find that there is an
element a ∈ I−1 such that

|NL/Q(a)| ≤ n!

nn

(
4

π

)s √
∆(OL//bZ) N(I)−1.
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Let J = aI. Since a ∈ I−1, we see that

aI = a(I−1)−1 ⊂ OL.

We also have

N(aI) ≤ n!

nn

(
4

π

)s √
∆(OL//bZ) N(I)−1N(I) =

n!

nn

(
4

π

)s √
∆(OL//bZ),

so we are done. �

My computation for Z[
√
−13] was incorrect, I’ll fix it next time.


