Math 531 Tom Tucker

NOTES FROM CLASS 11/12
Throughout, L is as usual degree n over $\mathbb{Q}, h: L \longrightarrow V$ is the usual embedding, r is the number of real places of L and $s=(n-r) / 2$. Also, N is $\mathrm{N}_{L / \mathbb{Q}}$.
Proposition 30.1.

$$
\operatorname{Vol}\left(X_{t}\right)=\frac{2^{r-s} \pi^{s} t^{n}}{n!}
$$

Proof. The proof of this is in the book on p. 66. The last step in the calculation is integration by parts, which the book neglects to mention.

Lemma 30.2. Let U be any bounded region of V and let \mathcal{L} be a full lattice in V. Then $\mathcal{L} \cap U$ is finite.
Proof. Let w_{1}, \ldots, w_{n} be a basis for \mathcal{L} and let x_{1}, \ldots, x_{n} be the basis for V that gives the volume form. If M is the matrix given by $M x_{i}=w_{i}$, then for any integers m_{i} we have

$$
\left|\sum_{i=1}^{n} m_{i} w_{i}\right|^{2}=\left|M\left(\sum_{i=1}^{n} m_{i} x_{i}\right)\right|^{2} \geq \sum_{i=1}^{n} m_{i}^{2}\|M\|_{\mathrm{inf}}^{2}
$$

where $\|M\|_{\text {inf }}$ is the minimum value of $|M(y)|$ for y on the unit sphere centered at the origin (which is nonzero). For any constant C there are finitely many integers m_{i} such that

$$
\sum_{i=1}^{n} m_{i}^{2}\|M\|_{\mathrm{inf}}^{2} \leq C^{2}
$$

so there are finitely many elements of λ in the sphere of radius C centered at the origin. Any bounded region is contained in such a sphere, so we are done.
Theorem 30.3. Let I be a nonzero fractional ideal of \mathcal{O}_{L}. Then there exists $a \neq 0$ such that

$$
\left|\mathrm{N}_{L / \mathbb{Q}}(a)\right| \leq \frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{s} \sqrt{\Delta\left(\mathcal{O}_{L} / / b Z\right)} \mathrm{N}_{L / \mathbb{Q}}(I)
$$

Proof. We want to choose X_{t} to which we can apply Minkowski's theorem and produce an element of $X_{t} \cap h(I)$. Recall that

$$
\operatorname{Vol}(h(I))=\frac{1}{2^{s}} \sqrt{\Delta\left(\mathcal{O}_{L} / \mathbb{Z}\right)} \mathrm{N}(I),
$$

so we need t with

$$
\frac{2^{r-s} \pi^{s} t^{n}}{n!}>2^{n} \frac{1}{2^{s}} \sqrt{\Delta\left(\mathcal{O}_{L} / \mathbb{Z}\right)} \mathrm{N}(I)
$$

which is equivalent to

$$
t>\sqrt[n]{n!\frac{1}{\pi^{s}} 2^{n-s-r+s} \sqrt{\Delta\left(\mathcal{O}_{L} / \mathbb{Z}\right)} \mathrm{N}(I)}=\sqrt[n]{n!\left(\frac{4}{\pi}\right)^{s} \sqrt{\Delta\left(\mathcal{O}_{L} / \mathbb{Z}\right)} \mathrm{N}(I)}
$$

so let

$$
C:=\sqrt[n]{n!\left(\frac{4}{p i}\right)^{s} \sqrt{\Delta\left(\mathcal{O}_{L} / \mathbb{Z}\right)} \mathrm{N}(I)}
$$

Then $\operatorname{Vol}\left(X_{C+\epsilon}\right)>\operatorname{Vol}(h(I))$ for any $\epsilon>0$. It follows that $X_{C+\epsilon} \cap$ $h(I) \neq 0$ by Minkowski's theorem. If

$$
X_{C+\epsilon} \cap h(I)=X_{C} \cap h(I)
$$

then $X_{C} \cap h(I) \neq 0$. Otherwise, let $\epsilon^{\prime}>0$ be the smallest number such that

$$
X_{C+\epsilon} \cap h(I) \neq X_{C} \cap h(I)
$$

Such a number exists since $X_{C+\epsilon} \cap h(I)$ is finite and any finite noempty set has a minimal element. Taking $0<\delta<\epsilon^{\prime}$, we see that

$$
X_{C} \cap h(I)=X_{C+\delta} \cap h(I) \neq 0
$$

so there is a nonzero element $a \in X_{C} \cap h(I)$. From earlier work, we see that

$$
N(a) \leq(C / n)^{n}=\frac{n!}{n^{n}}\left(\frac{4}{p i}\right)^{s} \sqrt{\Delta\left(\mathcal{O}_{L} / \mathbb{Z}\right)} \mathrm{N}(I)
$$

Let's do an easy lemma.
Lemma 30.4. Let I be a fractional ideal of a Dedekind domain A and let $a \neq 0$ be in I. Then $a I^{-1} \subseteq A$.

Proof. Since $A a \subseteq I$, we have

$$
I^{-1} A a \subseteq I I^{-1}=A
$$

Theorem 30.5. Let $I \subset \mathcal{O}_{L}$ be any fractional ideal of \mathcal{O}_{L}. Then there exists an ideal $J \subset \mathcal{O}_{L}$ in the same ideal class as I such that

$$
\left.\mid \mathrm{N}_{L / \mathbb{Q}}(J)\right) \left\lvert\, \leq \frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{s} \mathrm{~N}_{L / \mathbb{Q}}(I) \sqrt{\Delta\left(\mathcal{O}_{L} / / b Z\right)}\right.
$$

Proof. Applying the previous theorem to I^{-1}, we find that there is an element $a \in I^{-1}$ such that

$$
\left|\mathrm{N}_{L / \mathbb{Q}}(a)\right| \leq \frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{s} \sqrt{\Delta\left(\mathcal{O}_{L} / / b Z\right)} \mathrm{N}(I)^{-1}
$$

Let $J=a I$. Since $a \in I^{-1}$, we see that

$$
a I=a\left(I^{-1}\right)^{-1} \subset \mathcal{O}_{L}
$$

We also have
$\mathrm{N}(a I) \leq \frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{s} \sqrt{\Delta\left(\mathcal{O}_{L} / / b Z\right)} \mathrm{N}(I)^{-1} N(I)=\frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{s} \sqrt{\Delta\left(\mathcal{O}_{L} / / b Z\right)}$,
so we are done.
My computation for $\mathbb{Z}[\sqrt{-13}]$ was incorrect, I'll fix it next time.

