Math 531 Tom Tucker
NOTES FROM CLASS 11/10

We'll need Minkowski’s theorem, which guarantees the existence of
certain elements of a lattice. We'll recall a a lemma from last time.

Lemma 29.1. Let L be a lattice in V' (R™ with a volume form) and
let U be a measurable subset of V' such that the translates U + A, where
A € L are disjoint. Then Vol(U) < Vol(L).

Proof. Let T be a fundamental parallelepiped for some basis of L. For
each \ € L, let
Uy=Tn(U-=M\).
We then have
U= U (Ux+A).
AeL
Since the volume form is translate invariant, we see that

D Vol(Uy) = Vol(Uy + A) = Vol(U).

eL AeL
Since all the U, are disjoint and contained in 7', we see that

Vol(£) = Vol(T) > Vol(|J(U1) =D Vol(U,) = Vol(U).
O

Theorem 29.2. (Minkowsi) Let L be a full lattice in the volumed vec-
tor space V' of dimension n and let U be a bounded, centrally symmetric,
convez subset of V. If Vol(U) > 2™ Vol(L), then U contains a nonzero
element A € L

Proof. By the way, centrally symmetric means that for x € U, we have
—z € U. Convex means that for z,y € U and ¢t € [0,1], we have
tr+(1—t)yeU.

Now, let W = 1U. Then Vol(W) = 5% Vol(U), so Vol(W) > Vol(L),
so it follows from the Lemma, we just proved that not all of the trans-
lates W+ \ are disjoint. Taking y € (W+A)N(W+X), with A # X, we
can write y = a+ A = b+ X, which gives us a,b € W with (e —b) € L
and (a—b) # 0. Since a,b € W = 1U, we can write a = 3z and b = 1y
for z,y € U. Since y is convex and centrally symmetric the element
a—b=1izx—iy=1x+ i(—y) € U and we are done. O

We will want to apply this to a lattice h(I) for I a fractional ideal of
Op. The region U that we use should consist of elements of bounded

norm. Recall though, that the most natural sort of region is something

like a sphere /2% + - - - + 22 < M and we are going to be interested in
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something like the product z; - - - z,,, so we will need something relating
these two. Also, we have messed around a bit at the complex places, to
we’ll have to tinker with that a bit. Let’s label our coordinate system
for V' in the following way. We call the first r-coordinates corresponding

to the real embeddings xi,...,z,. The remaining 2s coordinates we
label as y1, 21, ..., Ys, Zs.
Let

Xt:{'rlu"')x’l‘aylvzlw"7y87z8 | Z|$z|+22\/y]2+232 St}
i=1 j=1

from now on. It is easy to see that X, is convex, bounded, and centrally
symmetric, so we will be able to apply Minkowski’s theorem to it.

Proposition 29.3. Lety € L. If h(y) € Xy, then Npg(y) < (t/n)"™
Proof. Let b; = 0;(y) for 1 <1i <r and let

bri1 =bry2 = \/y%‘i‘zfa---’bn—l = b, = VY3 + 22.
Then

N(y) = o1 loa@lora @) Plovs@)]* - on-a @) = b - bal.
By the arithmetic/geometric mean inequality

n bl
t/n = Z% > /|by| - |bal.
=1

Taking n-th powers finishes the proof. O

Lemma 29.4. Let by,...,b, be positive numbers. Then
(1) 252 by by

Proof. Since the right and left-hand sides of (1) scale, we can assume
that

m

2=l

=1

sS|&

Thus, we need only show that
by---b, <1.
We can write b; = (1 + a;) with a; + -+ + a,, = 0. To show that
l+a)--(1+a,) <1
it will suffice to show that that the function
F(t)=(1+ait) - (1+ayt)
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is decreasing on the interval [0, 1]. This can be checked by simply taking
the derivative of F'. We find that

F'(t) = Zai H(l + a;t).

i=1  j#i

If all of the a; are 0, this is clearly 0. Otherwise, we can write

F'(t) =Y asl [T+ ait) = > ladl [ J(1+ ait)

a;>0 JjF#i a;<0 j#i
< . ) _ , i .
< (3 s (I ) = (O gy (T ).
a;>0 ik ;<0 J#k
Since
> lail = > lai
a; >0 a; <0
and
max <H(1 + aﬂ)) < min <H(1 + ajt)>
j#k J#k

we must have F'(t) < 0 on the desired interval, so F' must be decreasing
on this interval. d



