
Math 531 Tom Tucker
NOTES FROM CLASS 11/10

We’ll need Minkowski’s theorem, which guarantees the existence of
certain elements of a lattice. We’ll recall a a lemma from last time.

Lemma 29.1. Let L be a lattice in V (Rn with a volume form) and
let U be a measurable subset of V such that the translates U +λ, where
λ ∈ L are disjoint. Then Vol(U) ≤ Vol(L).

Proof. Let T be a fundamental parallelepiped for some basis of L. For
each λ ∈ L, let

Uλ = T ∩ (U − λ).

We then have
U =

⋃
λ∈L

(Uλ + λ).

Since the volume form is translate invariant, we see that∑
λ∈L

Vol(Uλ) =
∑
λ∈L

Vol(Uλ + λ) = Vol(U).

Since all the Uλ are disjoint and contained in T , we see that

Vol(L) = Vol(T ) ≥ Vol(
⋃
λ∈L

(Uλ)) =
∑
λ∈L

Vol(Uλ) = Vol(U).

�

Theorem 29.2. (Minkowsi) Let L be a full lattice in the volumed vec-
tor space V of dimension n and let U be a bounded, centrally symmetric,
convex subset of V . If Vol(U) > 2n Vol(L), then U contains a nonzero
element λ ∈ L

Proof. By the way, centrally symmetric means that for x ∈ U , we have
−x ∈ U . Convex means that for x, y ∈ U and t ∈ [0, 1], we have
tx + (1− t)y ∈ U .

Now, let W = 1
2
U . Then Vol(W ) = 1

2n Vol(U), so Vol(W ) > Vol(L),
so it follows from the Lemma, we just proved that not all of the trans-
lates W +λ are disjoint. Taking y ∈ (W +λ)∩(W +λ′), with λ 6= λ′, we
can write y = a + λ = b + λ′, which gives us a, b ∈ W with (a− b) ∈ L
and (a− b) 6= 0. Since a, b ∈ W = 1

2
U , we can write a = 1

2
x and b = 1

2
y

for x, y ∈ U . Since y is convex and centrally symmetric the element
a− b = 1

2
x− 1

2
y = 1

2
x + 1

2
(−y) ∈ U and we are done. �

We will want to apply this to a lattice h(I) for I a fractional ideal of
OL. The region U that we use should consist of elements of bounded
norm. Recall though, that the most natural sort of region is something
like a sphere

√
x2

1 + · · ·+ x2
n ≤ M and we are going to be interested in

1
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something like the product x1 · · ·xn, so we will need something relating
these two. Also, we have messed around a bit at the complex places, to
we’ll have to tinker with that a bit. Let’s label our coordinate system
for V in the following way. We call the first r-coordinates corresponding
to the real embeddings x1, . . . , xr. The remaining 2s coordinates we
label as y1, z1, . . . , ys, zs.

Let

Xt = {x1, . . . , xr, y1, z1, . . . , ys, zs |
r∑

i=1

|xi|+
s∑

j=1

2
√

y2
j + z2

j ≤ t}

from now on. It is easy to see that Xt is convex, bounded, and centrally
symmetric, so we will be able to apply Minkowski’s theorem to it.

Proposition 29.3. Let y ∈ L. If h(y) ∈ Xt, then NL/Q(y) ≤ (t/n)n.

Proof. Let bi = σi(y) for 1 ≤ i ≤ r and let

br+1 = br+2 =
√

y2
1 + z2

1 , . . . , bn−1 = bn =
√

y2
s + z2

s .

Then

N(y) = |σ1(y)| · · · |σn(y)||σr+1(y)|2|σr+3(y)|2 · · · |σn−1(y)|2 = |b1| · · · |bn|.
By the arithmetic/geometric mean inequality

t/n =
n∑

i=1

|bi|
n

≥ n
√
|b1| · · · |bn|.

Taking n-th powers finishes the proof. �

Lemma 29.4. Let b1, . . . , bn be positive numbers. Then

(1)
m∑

i=1

bi

n
≥ n
√

b1 · · · bn.

Proof. Since the right and left-hand sides of (1) scale, we can assume
that

m∑
i=1

bi

n
= 1.

Thus, we need only show that

b1 · · · bn ≤ 1.

We can write bi = (1 + ai) with a1 + · · ·+ an = 0. To show that

(1 + a1) · · · (1 + an) ≤ 1

it will suffice to show that that the function

F (t) = (1 + a1t) · · · (1 + ant)



3

is decreasing on the interval [0, 1]. This can be checked by simply taking
the derivative of F . We find that

F ′(t) =
n∑

i=1

ai

∏
j 6=i

(1 + ait).

If all of the ai are 0, this is clearly 0. Otherwise, we can write

F ′(t) =
∑
ai>0

|ai|
∏
j 6=i

(1 + ait)−
∑
ai<0

|ai|
∏
j 6=i

(1 + ait)

≤ (
∑
ai>0

|ai|) max
ak>0

(∏
j 6=k

(1 + ajt)

)
− (
∑
ai<0

|ai|) min
ak<0

(∏
j 6=k

(1 + ajt)

)
.

Since ∑
ai>0

|ai| =
∑
ai<0

|ai|

and

max
ak>0

(∏
j 6=k

(1 + ajt)

)
< min

ak<0

(∏
j 6=k

(1 + ajt)

)
we must have F ′(t) < 0 on the desired interval, so F must be decreasing
on this interval. �


