Math 531 Tom Tucker

NOTES FROM CLASS 11/10
We'll need Minkowski's theorem, which guarantees the existence of certain elements of a lattice. We'll recall a a lemma from last time.

Lemma 29.1. Let \mathcal{L} be a lattice in $V\left(\mathbb{R}^{n}\right.$ with a volume form) and let U be a measurable subset of V such that the translates $U+\lambda$, where $\lambda \in \mathcal{L}$ are disjoint. Then $\operatorname{Vol}(U) \leq \operatorname{Vol}(\mathcal{L})$.

Proof. Let \mathcal{T} be a fundamental parallelepiped for some basis of \mathcal{L}. For each $\lambda \in \mathcal{L}$, let

$$
U_{\lambda}=\mathcal{T} \cap(U-\lambda) .
$$

We then have

$$
U=\bigcup_{\lambda \in \mathcal{L}}\left(U_{\lambda}+\lambda\right)
$$

Since the volume form is translate invariant, we see that

$$
\sum_{\lambda \in \mathcal{L}} \operatorname{Vol}\left(U_{\lambda}\right)=\sum_{\lambda \in \mathcal{L}} \operatorname{Vol}\left(U_{\lambda}+\lambda\right)=\operatorname{Vol}(U) .
$$

Since all the U_{λ} are disjoint and contained in \mathcal{T}, we see that

$$
\operatorname{Vol}(\mathcal{L})=\operatorname{Vol}(\mathcal{T}) \geq \operatorname{Vol}\left(\bigcup_{\lambda \in \mathcal{L}}\left(U_{\lambda}\right)\right)=\sum_{\lambda \in \mathcal{L}} \operatorname{Vol}\left(U_{\lambda}\right)=\operatorname{Vol}(U) .
$$

Theorem 29.2. (Minkowsi) Let \mathcal{L} be a full lattice in the volumed vector space V of dimension n and let U be a bounded, centrally symmetric, convex subset of V. If $\operatorname{Vol}(U)>2^{n} \operatorname{Vol}(\mathcal{L})$, then U contains a nonzero element $\lambda \in \mathcal{L}$

Proof. By the way, centrally symmetric means that for $x \in U$, we have $-x \in U$. Convex means that for $x, y \in U$ and $t \in[0,1]$, we have $t x+(1-t) y \in U$.

Now, let $W=\frac{1}{2} U$. Then $\operatorname{Vol}(W)=\frac{1}{2^{n}} \operatorname{Vol}(U)$, so $\operatorname{Vol}(W)>\operatorname{Vol}(\mathcal{L})$, so it follows from the Lemma, we just proved that not all of the translates $W+\lambda$ are disjoint. Taking $y \in(W+\lambda) \cap\left(W+\lambda^{\prime}\right)$, with $\lambda \neq \lambda^{\prime}$, we can write $y=a+\lambda=b+\lambda^{\prime}$, which gives us $a, b \in W$ with $(a-b) \in \mathcal{L}$ and $(a-b) \neq 0$. Since $a, b \in W=\frac{1}{2} U$, we can write $a=\frac{1}{2} x$ and $b=\frac{1}{2} y$ for $x, y \in U$. Since y is convex and centrally symmetric the element $a-b=\frac{1}{2} x-\frac{1}{2} y=\frac{1}{2} x+\frac{1}{2}(-y) \in U$ and we are done.

We will want to apply this to a lattice $h(I)$ for I a fractional ideal of \mathcal{O}_{L}. The region U that we use should consist of elements of bounded norm. Recall though, that the most natural sort of region is something like a sphere $\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}} \leq M$ and we are going to be interested in
something like the product $x_{1} \cdots x_{n}$, so we will need something relating these two. Also, we have messed around a bit at the complex places, to we'll have to tinker with that a bit. Let's label our coordinate system for V in the following way. We call the first r-coordinates corresponding to the real embeddings x_{1}, \ldots, x_{r}. The remaining $2 s$ coordinates we label as $y_{1}, z_{1}, \ldots, y_{s}, z_{s}$.

Let

$$
X_{t}=\left\{x_{1}, \ldots, x_{r}, y_{1}, z_{1}, \ldots, y_{s}, z_{s}\left|\sum_{i=1}^{r}\right| x_{i} \mid+\sum_{j=1}^{s} 2 \sqrt{y_{j}^{2}+z_{j}^{2}} \leq t\right\}
$$

from now on. It is easy to see that X_{t} is convex, bounded, and centrally symmetric, so we will be able to apply Minkowski's theorem to it.
Proposition 29.3. Let $y \in L$. If $h(y) \in X_{t}$, then $\mathrm{N}_{L / \mathbb{Q}}(y) \leq(t / n)^{n}$.
Proof. Let $b_{i}=\sigma_{i}(y)$ for $1 \leq i \leq r$ and let

$$
b_{r+1}=b_{r+2}=\sqrt{y_{1}^{2}+z_{1}^{2}}, \ldots, b_{n-1}=b_{n}=\sqrt{y_{s}^{2}+z_{s}^{2}}
$$

Then
$\mathrm{N}(y)=\left|\sigma_{1}(y)\right| \cdots\left|\sigma_{n}(y)\right|\left|\sigma_{r+1}(y)\right|^{2}\left|\sigma_{r+3}(y)\right|^{2} \cdots\left|\sigma_{n-1}(y)\right|^{2}=\left|b_{1}\right| \cdots\left|b_{n}\right|$.
By the arithmetic/geometric mean inequality

$$
t / n=\sum_{i=1}^{n} \frac{\left|b_{i}\right|}{n} \geq \sqrt[n]{\left|b_{1}\right| \cdots\left|b_{n}\right|}
$$

Taking n-th powers finishes the proof.
Lemma 29.4. Let b_{1}, \ldots, b_{n} be positive numbers. Then

$$
\begin{equation*}
\sum_{i=1}^{m} \frac{b_{i}}{n} \geq \sqrt[n]{b_{1} \cdots b_{n}} \tag{1}
\end{equation*}
$$

Proof. Since the right and left-hand sides of (1) scale, we can assume that

$$
\sum_{i=1}^{m} \frac{b_{i}}{n}=1
$$

Thus, we need only show that

$$
b_{1} \cdots b_{n} \leq 1
$$

We can write $b_{i}=\left(1+a_{i}\right)$ with $a_{1}+\cdots+a_{n}=0$. To show that

$$
\left(1+a_{1}\right) \cdots\left(1+a_{n}\right) \leq 1
$$

it will suffice to show that that the function

$$
F(t)=\left(1+a_{1} t\right) \cdots\left(1+a_{n} t\right)
$$

is decreasing on the interval $[0,1]$. This can be checked by simply taking the derivative of F. We find that

$$
F^{\prime}(t)=\sum_{i=1}^{n} a_{i} \prod_{j \neq i}\left(1+a_{i} t\right) .
$$

If all of the a_{i} are 0 , this is clearly 0 . Otherwise, we can write

$$
\begin{aligned}
F^{\prime}(t) & =\sum_{a_{i}>0}\left|a_{i}\right| \prod_{j \neq i}\left(1+a_{i} t\right)-\sum_{a_{i}<0}\left|a_{i}\right| \prod_{j \neq i}\left(1+a_{i} t\right) \\
& \leq\left(\sum_{a_{i}>0}\left|a_{i}\right|\right) \max _{a_{k}>0}\left(\prod_{j \neq k}\left(1+a_{j} t\right)\right)-\left(\sum_{a_{i}<0}\left|a_{i}\right|\right) \min _{a_{k}<0}\left(\prod_{j \neq k}\left(1+a_{j} t\right)\right) .
\end{aligned}
$$

Since

$$
\sum_{a_{i}>0}\left|a_{i}\right|=\sum_{a_{i}<0}\left|a_{i}\right|
$$

and

$$
\max _{a_{k}>0}\left(\prod_{j \neq k}\left(1+a_{j} t\right)\right)<\min _{a_{k}<0}\left(\prod_{j \neq k}\left(1+a_{j} t\right)\right)
$$

we must have $F^{\prime}(t)<0$ on the desired interval, so F must be decreasing on this interval.

