Math 531 Tom Tucker NOTES FROM CLASS 11/05

Recall from last time... From now on, we'll stick to L a finite field extension of \mathbb{Q} of degree n with ring of integers \mathcal{O}_L . Some of what we do applies to other orders in L, too.

Let's order the embeddings $\sigma_1, \ldots, \sigma_n$ $(n = [L : \mathbb{Q}])$ in the following way. We let $\sigma_1, \ldots, \sigma_s$ be real embeddings. The remaining embeddings come in pairs as explained above, so for $i = r + 1, r + 3, \ldots$, we let σ_i be a complex embedding and let $\sigma_{i+1} = \overline{\sigma_i}$. We let s be the number of complex embeddings. We have r + 2s = n.

Now, we can embed \mathcal{O}_L into \mathbb{R}^n by letting

$$h(y) = (\sigma_{1}(y), \dots, \sigma_{r}(y), \\ \Re(\sigma_{r+1}(y)), \Im(\sigma_{r+1}(y)), \dots, \Re(\sigma_{r+2(s-1)}(y)), \Im(\sigma_{r+2(s-1)}(y))) \\ = (\sigma_{1}(y), \dots, \sigma_{r}(y), \\ \frac{\sigma_{r+1}(y) + \sigma_{r+2}(y)}{2}, \frac{\sigma_{r+1}(y) - \sigma_{r+2}(y)}{2i}, \dots, \\ \frac{\sigma_{r+2(s-1)}(y) + \sigma_{r+2(s-1)}(y)}{2}, \frac{\sigma_{r+2(s-1)}(y) - \sigma_{r+2(s-1)+1}(y)}{2i}).$$

Let us also denote as h_i the map $h : \mathcal{O}_L \longrightarrow \mathbb{R}$ given by composing h with projection p_i onto the *i*-th coordinate of \mathbb{R}^n .

We will continue to use h and h_i as defined above. We will also continue to let s and r be as above and to let n = r + 2s be the degree $[L:\mathbb{Q}]$.

Proposition 27.1. Let B be an integral extension of \mathbb{Z} with field of fractions L. Let w_1, \ldots, w_n be a basis for a B over \mathbb{Z} . Then

$$(\det[h_i(w_j)])^2 = \frac{1}{(-2i)^{2s}} |\Delta(B/\mathbb{Z})|.$$

Proof. From the HW just assigned (problem #2), we know that

$$(\det[\sigma_i(w_j)])^2 = |\Delta(B/bZ)|.$$

We also know from (1) that h_i differs from σ_i (when the σ 's are ordered as in that equation) only for σ_i complex and we can obtain h_i for even i > r by adding up two σ_i and dividing by 2. We can then get the odd *i*-th rows by subtracting the i-1 row from the *i*-th row and diving by -i. I will put this on the board. \Box

Corollary 27.2. The image $h(\mathcal{O}_L)$ in \mathbb{R}^n is a full lattice.

Proof. Since $\Delta(\mathcal{O}_L/bZ) \neq 0$, the determinant det $[h_i(w_j)] \neq 0$, so the $h_i(w_j)$ are linearly independent over \mathbb{R} . Hence they generate \mathbb{R}^n as an \mathbb{R} -vector space and \mathcal{O}_L is a full lattice. \Box

In the book the following characterization of a lattice is proven. We will not use it, so I will not give the proof in class.

Theorem 27.3. (Thm. 12.2) An additive subgroup $\mathcal{L} \subset \mathbb{R}^n$ is a lattice if and only if every sphere in \mathbb{R}^n contains only finitely many elements of \mathcal{L} .

We will not need this characterization.

***** Fundamental parallelepipeds. Let \mathcal{L} be a full lattice in \mathbb{R}^n and let w_1, \ldots, w_n be a basis for \mathcal{L} over \mathbb{Z} . We call the set

$$\mathcal{T} = \{ r_1 v_1 + \dots + r_n w_n \mid 0 \le r_i < 1, \ r_i \in \mathbb{R} \}$$

the fundamental parallelepiped for the basis w_1, \ldots, w_n .

Lemma 27.4. Let \mathcal{L} be a full lattice in \mathbb{R}^n and let w_1, \ldots, w_n be a basis for \mathcal{L} over \mathbb{Z} with fundamental parallelepipeds \mathcal{T} . Then every element $v \in \mathbb{R}^n$ can be written as $t + \lambda$ for a unique $t \in \mathcal{T}$ and $\lambda \in \mathcal{L}$. In particular, the sets $\lambda + \mathcal{T}$ are disjoint and cover all of \mathbb{R}^n .

Proof. Let $v \in V$. Write $v = \sum_{i=1}^{m} s_i w_i$ (uniquely). Then each s_i can be written uniquely as an integer plus a real number less than 1, that is as

$$s_i = [s_i] + r_i$$

where the brackets are the greatest integer function and $r_i < 1$.

Now, we want to work with volumes. A volume on \mathbb{R}^n comes from a choice of orthonormal basis x_1, \ldots, x_n . Let V be the vector space \mathbb{R}^n equipped with the orthonormal basis x_1, \ldots, x_n . For a lattice \mathcal{L} with basis w_1, \ldots, w_n , we can write

$$w_i = \sum_{j=1}^n s_{ij} x_j.$$

It follows from multivariable calculus that the volume of the parallelepipeds \mathcal{T} for the w_i is

$$\int \dots \int_{\mathcal{T}} dx_1 \dots dx_n = \int \dots \int_{0 \le x_i < 1} |\det[s_{ij}]| dx_1 \dots dx_n = |\det[s_{ij}]|.$$

We call the quantity $|\det[s_{ij}]|$ the volume of \mathcal{L} . It does not depend on our choice of basis since any two choice of bases differ by a change of basis matrix with determinant ± 1 .

Note that there is a choice of basis implicit in our map $h : \mathcal{O}_L \longrightarrow \mathbb{R}^n$. This basis comes from the coordinates with which we have described our map. Draw picture on board. We will call this basis x_i and call \mathbb{R}^n equipped with this volume form V. **Theorem 27.5.** The volume of $h(\mathcal{O}_L)$ in V is

$$\frac{1}{2^s}\sqrt{|\Delta(\mathcal{O}_L/\mathbb{Z})|}.$$

Proof. This follows immediately from Proposition 27.1, since the matrix we have written is with respect to the basis x_i above.

Now, let I be a fractional ideal in \mathcal{L} . The ideal I is torsion-free as \mathbb{Z} -module. We can calculate the volume of h(I) in terms of the degree of L, the discriminant $|\Delta(\mathcal{O}_L/\mathbb{Z})|$, and $|\mathcal{N}_{L/K}(I)|$.