Math 531 Tom Tucker
NOTES FROM CLASS 11/01
Let's prove a few things about discriminants, before moving on.
Lemma 26.1. Let A be a Dedekind domain with field of fractions K, let $K \subseteq L$, and $K \subseteq E$ be separable, finite extensions that are linearly disjoint over K. Let R_{E} be the integral closure of A in E and let B be an integral extension of A with field of fractions L. Let $C=R_{E} B$ be the compositum of R_{E} and B in $E L$. Then $\Delta\left(C / R_{E}\right) R_{E}=\Delta(B / A) R_{E}$.
Proof. It will suffice to show that for \mathcal{P} be a prime of A and $S=A \backslash \mathcal{P}$, we have $S^{-1} R_{E} \Delta\left(S^{-1} C / S^{-1} R_{E}\right)=S^{-1} R_{E} \Delta\left(S^{-1} B / A_{\mathcal{P}}\right)$, since

$$
S^{-1} R_{E} \Delta(B / A)=S^{-1} R_{E} A_{\mathcal{P}} \Delta(B / A)=S^{-1} R_{E}\left(S^{-1} / A_{\mathcal{P}}\right)
$$

Thus, we may assume that $A=A_{\mathcal{P}}$, that $B=S^{-1} B, R_{E}=S^{-1} R_{E}$, $C=S^{-1} C$. Let w_{1}, \ldots, w_{n} be basis for B over A (we have assumed now that A is a DVR). Then w_{1}, \ldots, w_{n} must also generate C as an R_{E}-module. Moreover, since $[E L: E]=[L: K]=n$, since E and L are linearly disjoint. Hence, w_{1}, \ldots, w_{n} is a basis for C over R_{E}. We can use it to calculate both discriminants then. It is clear that $\mathrm{T}_{L / K}(y)=\mathrm{T}_{L E / L}(y)$ for any $y \in L$, since the trace is determined by how $y w_{i}$ can be written in terms of the w_{i}. We see then that

$$
\Delta(C / B)=\operatorname{det}\left[\mathrm{T}_{L E / L}\left(w_{i} w_{j}\right)\right]=\operatorname{det}\left[\mathrm{T}_{L / K}\left(w_{i} w_{j}\right)\right]=\Delta\left(R_{E} / A\right)
$$

and we are done.
Proposition 26.2. Let A be a Dedekind domain with field of fractions K, let $K \subseteq L$, and $K \subseteq E$ be separable, finite extensions that are linearly disjoint over K. Let R_{E} be the integral closure of A in E and let R_{L} be the integral closure of A in L. Suppose that $A \Delta\left(R_{E} / A\right)+$ $A \Delta\left(R_{L} / A\right)=1$. Then $C=R_{E} R_{L}$ is Dedekind.
Proof. Let \mathcal{M} be a prime in $R_{E} R_{L}$ such that $\mathcal{M} \cap A=\mathcal{P}$. Since $A \Delta\left(R_{E} / A\right)+A \Delta\left(R_{L} / A\right)=1$, either $A \Delta\left(R_{E} / A\right)$ or $A \Delta\left(R_{L} / A\right)$ is contained in \mathcal{P}. We may suppose WLOG that $A \Delta\left(R_{L} / A\right)$ isn't contained in \mathcal{P}. It follows from the Lemma above that for any $\mathcal{Q} \cap R_{E}$ that is prime and lies over \mathcal{P}, the ideal $R_{E} \Delta\left(C / R_{E}\right)$ doesn't contain \mathcal{Q}. Thus, if $S=R_{E} \backslash \mathcal{Q}$, then $S^{-1} C$ is Dedekind, so \mathcal{M} is invertible. So every prime \mathcal{M} of C is invertible and C must be Dedekind.

We were in the middle of proving the following...
Proposition 26.3. Let A be a Dedekind domain with field of fractions K, let $K \subseteq L$, and $K \subseteq E$ be separable, finite extensions that are linearly disjoint over K. Let R_{E} be the integral closure of A in E and
let R_{L} be the integral closure of A in L. Suppose that $A \Delta\left(R_{E} / A\right)+$ $A \Delta\left(R_{L} / A\right)=1$. Then $C=R_{E} R_{L}$ is Dedekind.

Proof. Let \mathcal{M} be a prime in $R_{E} R_{L}$ such that $\mathcal{M} \cap A=\mathcal{P}$. Since $A \Delta\left(R_{E} / A\right)+A \Delta\left(R_{L} / A\right)=1$, either $A \Delta\left(R_{E} / A\right)$ or $A \Delta\left(R_{L} / A\right)$ is not contained in \mathcal{P}. We may suppose WLOG that $A \Delta\left(R_{L} / A\right)$ doesn't isn't contained in \mathcal{P}. It follows from the Lemma above that for any $\mathcal{Q} \cap R_{E}$ that is prime and lies over \mathcal{P}, the ideal $R_{E} \Delta\left(C / R_{E}\right)$ doesn't contain \mathcal{Q}. Thus, if $S=R_{E} \backslash \mathcal{Q}$, then $S^{-1} C$ is Dedekind, so \mathcal{M} is invertible. So every prime \mathcal{M} of C is invertible and C must be Dedekind.

Lemma 26.4. Let $K \subset K^{\prime} \subset L$ be finite separable field extensions. Let A be Dedekind with field of fractions K, and let R_{L} and $R_{K^{\prime}}$ be integral closures of A in L and K^{\prime} respectively. Let $\mathcal{Q} \subseteq R_{K^{\prime}}$ be a maximal ideal with $\mathcal{Q} \cap A=\mathcal{P}$. Then $\Delta\left(R_{L} / A\right)+\mathcal{P}=1$ implies $\Delta\left(R_{L} / R_{K^{\prime}}\right)+\mathcal{Q}=1$
Proof. It suffices to show that \mathcal{Q} doesn't ramify in R_{L} whenever \mathcal{P} doesn't ramify in R_{L}. So suppose \mathcal{P} doesn't ramify in R_{L}; then $\mathcal{P} R_{L}$ is a product of distinct primes in R_{L}. We also know that for some ideal I in $R_{K^{\prime}}$ we have

$$
\mathcal{P} R_{L}=\mathcal{P} R_{K^{\prime}} R_{L}=I \mathcal{Q} R_{L},
$$

so \mathcal{Q} factors into distinct primes also, which means that $\Delta\left(R_{L} / R_{K^{\prime}}\right)+$ $\mathcal{Q}=1$.

Theorem 26.5. Let A be a Dedekind domain with field of fractions K, let $K \subseteq L$, and $K \subseteq E$ be separable, finite extensions. Let R_{E} be the integral closure of A in E and let R_{L} be the integral closure of A in L. Suppose that $A \Delta\left(R_{E} / A\right)+A \Delta\left(R_{L} / A\right)=1$. Then $C=R_{E} R_{L}$ is Dedekind.

Proof. Let $K^{\prime}=E \cap L$ and let $R_{K^{\prime}}$ be the integral closure of A in K^{\prime} By Lemma 26.4, we must have $R_{K^{\prime}} \Delta\left(R_{E} / R_{K^{\prime}}\right)+R_{K^{\prime}} \Delta\left(R_{L} / R_{K^{\prime}}\right)+$ $\mathcal{Q}=1$ for any prime \mathcal{Q} of $R_{K^{\prime}}$, so we must have $R_{K^{\prime}} \Delta\left(R_{E} / R_{K^{\prime}}\right)+$ $R_{K^{\prime}} \Delta\left(R_{L} / R_{K^{\prime}}\right)=1$. Proposition 26.3 then applies to $R_{E} R_{L}$, when R_{E} and R_{L} are considered as extensions of $R_{K^{\prime}}$.
$* *$ Now, let's move on to the class group. Recall that for any integral domain R, we have notion of invertible ideals (recall that it is a fractional ideal with an inverse) and that we have an exact sequence

$$
0 \longrightarrow \operatorname{Pri}(R) \longrightarrow \operatorname{Inv}(R) \longrightarrow \operatorname{Pic}(R) \longrightarrow 0
$$

where $\operatorname{Pri}(R)$ is the set of principal ideals of $R, \operatorname{Inv}(R)$ is set of invertible ideals of R, and the group law is multiplication of fractional ideals. When R is Dedekind, we call $\operatorname{Pic}(R)$ the class group of R and denote it
as $\mathrm{Cl}(R)$. When R is the integral closure \mathcal{O}_{L} of \mathbb{Z} in some number field L, we often write $\mathrm{Cl}(L)$ for $\mathrm{Cl}\left(\mathcal{O}_{L}\right)$. We also write $\Delta(L)$ for $\Delta\left(\mathcal{O}_{L} / \mathbb{Z}\right)$. We want to prove the following.

Theorem 26.6. Let L be a number field. Then $\mathrm{Cl}(L)$ is finite.
We've already shown this $\mathbb{Z}[i]$. We showed that $\mathrm{Cl}(\mathbb{Z}[i])=1$, i.e. that it is a principal ideal domain. On the other hand, we've seen that $\operatorname{Pic}(\mathbb{Z}[\sqrt{19}]) \neq 1$ (this ring isn't Dedekind, but later we'll see Dedekind rings with nontrivial class groups.

How did we show that $\mathrm{Cl}(\mathbb{Z}[i])=1$? We took advantage of the fact that $\mathbb{Z}[i]$ forms a sublattice of \mathbb{C}. We'll try to do that in general.

Here is the idea... If we have a number field L of degree n over \mathbb{Q}, then we have n different embeddings of L into \mathbb{C}. They can be obtained by fixing one embedding $L \longrightarrow \mathbb{C}$ and then conjugating this embedding by elements in the cosets of H_{L} in $\operatorname{Gal}(M / \mathbb{Q})$ for M some Galois extension of \mathbb{Q} containing L. We'll use these to make B a full lattice in \mathbb{R}^{n}. What is a full lattice?

Definition 26.7. A lattice $\mathcal{L} \subset \mathbb{R}^{n}$ is a free \mathbb{Z}-module whose rank as a \mathbb{Z}-module is the equal to the dimension of the \mathbb{R}-vector space generated by \mathcal{L}. A full lattice $\mathcal{L} \subset \mathbb{R}^{n}$ is a free \mathbb{Z}-module of rank n that generates \mathbb{R}^{n} as a \mathbb{R}-vector space.

Example 26.8. (1) $\mathbb{Z}[\theta]$ where $\theta^{2}=3$ is not a full lattice of \mathbb{R}^{2} under the embedding $1 \mapsto 1$ and $\theta \mapsto \sqrt{3}$, since it generates an \mathbb{R}-vector space of dimension 1 .
(2) $\mathbb{Z}[i]$ is full lattice in \mathbb{R}^{2} where \mathbb{R}^{2} is \mathbb{C} considered as an \mathbb{R}-vector space with basis $1, i$ over \mathbb{R}.
On the other hand, we can send $\mathbb{Z}[\theta]$ where $\theta^{2}=3$ into \mathbb{R}^{2} in such a way that it is a full lattice in the following way. Let $\phi: 1 \mapsto(1,1)$ and $\phi: \theta: \longrightarrow(\sqrt{3},-\sqrt{3})$. In this case, we must generated \mathbb{R}^{2} as an \mathbb{R}^{2} vector space since $(1,1)$ and $(\sqrt{3},-\sqrt{3})$ are linearly independent.

There are two different types of embeddings of L into \mathbb{C}. There are the real ones and the complex ones. An embedding $\sigma: L \longrightarrow \mathbb{C}$ is real if $\overline{\sigma(y)}=\sigma(y)$ for every $y \in L$ (the bar here denotes complex conjugation) and is complex otherwise. How can we tell which is which?

Suppose we have a number field L. We can write $L \cong \mathbb{Q}[X] / f(X)$ for some monic irreducible polynomial L with integer coefficients. Then by the Chinese remainder theorem $\mathbb{R}[X] / f(X) \cong \bigoplus_{i=1}^{m} \mathbb{R}[X] / f_{i}(X)$ where the f_{i} have coefficients in \mathbb{R}, are irreducible over \mathbb{R}, and $f_{1} \ldots f_{m}=g$ (note that the f_{i} are distinct since L is separable over \mathbb{Q}). We also know that each f_{i} is of degree 1 or 2 . When f_{i} has degree 1 , then $\mathbb{R}[X] / f_{i}(X)$
is isomorphic to \mathbb{R} and when f_{i} has degree 2 , then $\mathbb{R}[X] / f_{i}(X)$ is isomorphic to \mathbb{C}. Since \mathbb{Q} has a natural embedding into \mathbb{R}, we obtain a natural embedding of

$$
j: L \cong \mathbb{Q}[X] / f(X) \longrightarrow \bigoplus_{i=1}^{m} \mathbb{R}[X] / f_{i}(X)
$$

Composing j with projection onto the i-th factor of

$$
\bigoplus_{i=1}^{m} \mathbb{R}[X] / f_{i}(X)
$$

then gives a map from $L \longrightarrow \mathbb{R}$ or $L \longrightarrow \mathbb{C}$. In fact, when $\operatorname{deg} f_{i}=$ 2 and $\mathbb{R}[X] / f_{i}(X)$ is \mathbb{C} we get two embeddings by composing with conjugation. The image of L is the same for these two embeddings, so we will want to link these two in some way...

Let's order the embeddings $\sigma_{1}, \ldots, \sigma_{n}(n=[L: \mathbb{Q}])$ in the following way. We let $\sigma_{1}, \ldots, \sigma_{s}$ be real embeddings. The remaining embeddings come in pairs as explained above, so for $i=r+1, r+3, \ldots$, we let σ_{i} be a complex embedding and let $\sigma_{i+1}=\overline{\sigma_{i+1}}$. We let s be the number of complex embeddings. We have $r+2 s=n$.

Now, we can embed \mathcal{O}_{L} into \mathbb{R}^{n} by letting

$$
\begin{align*}
& h(y)=\left(\sigma_{1}(y), \ldots, \sigma_{r}(y),\right. \\
& \left.\quad \Re\left(\sigma_{r+1}(y)\right), \Im\left(\sigma_{r+1}(y)\right), \ldots, \Re\left(\sigma_{r+2(s-1)}(y)\right), \Im\left(\sigma_{r+2(s-1)}(y)\right)\right) \\
& \quad=\left(\sigma_{1}(y), \ldots, \sigma_{r}(y),\right. \\
& \quad \frac{\sigma_{r+1}(y)+\sigma_{r+2}(y)}{2}, \frac{\sigma_{r+1}(y)-\sigma_{r+2}(y)}{2 i}, \ldots, \tag{1}\\
& \left.\quad \frac{\sigma_{r+2(s-1)}(y)+\sigma_{r+2(s-1)}(y)}{2}, \frac{\sigma_{r+2(s-1)}(y)-\sigma_{r+2(s-1)+1}(y)}{2 i}\right) .
\end{align*}
$$

Let us also denote as h_{i} the map $h: \mathcal{O}_{L} \longrightarrow \mathbb{R}$ given by composing h with projection p_{i} onto the i-th coordinate of \mathbb{R}^{n}.

We will continue to use h and h_{i} as defined above. We will also continue to let s and r be as above and to let $n=r+2 s$ be the degree $[L: \mathbb{Q}]$.

