Math 531 Tom Tucker NOTES FROM CLASS 11/01

Let's prove a few things about discriminants, before moving on.

Lemma 26.1. Let A be a Dedekind domain with field of fractions K, let $K \subseteq L$, and $K \subseteq E$ be separable, finite extensions that are linearly disjoint over K. Let R_E be the integral closure of A in E and let B be an integral extension of A with field of fractions L. Let $C = R_E B$ be the compositum of R_E and B in EL. Then $\Delta(C/R_E)R_E = \Delta(B/A)R_E$.

Proof. It will suffice to show that for \mathcal{P} be a prime of A and $S = A \setminus \mathcal{P}$, we have $S^{-1}R_E\Delta(S^{-1}C/S^{-1}R_E) = S^{-1}R_E\Delta(S^{-1}B/A_{\mathcal{P}})$, since

$$S^{-1}R_E\Delta(B/A) = S^{-1}R_EA_P\Delta(B/A) = S^{-1}R_E(S^{-1}/A_P).$$

Thus, we may assume that $A = A_{\mathcal{P}}$, that $B = S^{-1}B$, $R_E = S^{-1}R_E$, $C = S^{-1}C$. Let w_1, \ldots, w_n be basis for B over A (we have assumed now that A is a DVR). Then w_1, \ldots, w_n must also generate C as an R_E -module. Moreover, since [EL : E] = [L : K] = n, since E and L are linearly disjoint. Hence, w_1, \ldots, w_n is a basis for C over R_E . We can use it to calculate both discriminants then. It is clear that $T_{L/K}(y) = T_{LE/L}(y)$ for any $y \in L$, since the trace is determined by how yw_i can be written in terms of the w_i . We see then that

$$\Delta(C/B) = \det[\mathrm{T}_{LE/L}(w_i w_j)] = \det[\mathrm{T}_{L/K}(w_i w_j)] = \Delta(R_E/A),$$

and we are done.

Proposition 26.2. Let A be a Dedekind domain with field of fractions K, let $K \subseteq L$, and $K \subseteq E$ be separable, finite extensions that are linearly disjoint over K. Let R_E be the integral closure of A in E and let R_L be the integral closure of A in L. Suppose that $A\Delta(R_E/A) + A\Delta(R_L/A) = 1$. Then $C = R_E R_L$ is Dedekind.

Proof. Let \mathcal{M} be a prime in $R_E R_L$ such that $\mathcal{M} \cap A = \mathcal{P}$. Since $A\Delta(R_E/A) + A\Delta(R_L/A) = 1$, either $A\Delta(R_E/A)$ or $A\Delta(R_L/A)$ is contained in \mathcal{P} . We may suppose WLOG that $A\Delta(R_L/A)$ isn't contained in \mathcal{P} . It follows from the Lemma above that for any $\mathcal{Q} \cap R_E$ that is prime and lies over \mathcal{P} , the ideal $R_E\Delta(C/R_E)$ doesn't contain \mathcal{Q} . Thus, if $S = R_E \setminus \mathcal{Q}$, then $S^{-1}C$ is Dedekind, so \mathcal{M} is invertible. So every prime \mathcal{M} of C is invertible and C must be Dedekind. \Box

We were in the middle of proving the following...

Proposition 26.3. Let A be a Dedekind domain with field of fractions K, let $K \subseteq L$, and $K \subseteq E$ be separable, finite extensions that are linearly disjoint over K. Let R_E be the integral closure of A in E and

let R_L be the integral closure of A in L. Suppose that $A\Delta(R_E/A) + A\Delta(R_L/A) = 1$. Then $C = R_E R_L$ is Dedekind.

Proof. Let \mathcal{M} be a prime in $R_E R_L$ such that $\mathcal{M} \cap A = \mathcal{P}$. Since $A\Delta(R_E/A) + A\Delta(R_L/A) = 1$, either $A\Delta(R_E/A)$ or $A\Delta(R_L/A)$ is not contained in \mathcal{P} . We may suppose WLOG that $A\Delta(R_L/A)$ doesn't isn't contained in \mathcal{P} . It follows from the Lemma above that for any $\mathcal{Q} \cap R_E$ that is prime and lies over \mathcal{P} , the ideal $R_E\Delta(C/R_E)$ doesn't contain \mathcal{Q} . Thus, if $S = R_E \setminus \mathcal{Q}$, then $S^{-1}C$ is Dedekind, so \mathcal{M} is invertible. So every prime \mathcal{M} of C is invertible and C must be Dedekind.

Lemma 26.4. Let $K \subset K' \subset L$ be finite separable field extensions. Let A be Dedekind with field of fractions K, and let R_L and $R_{K'}$ be integral closures of A in L and K' respectively. Let $Q \subseteq R_{K'}$ be a maximal ideal with $Q \cap A = \mathcal{P}$. Then $\Delta(R_L/A) + \mathcal{P} = 1$ implies $\Delta(R_L/R_{K'}) + \mathcal{Q} = 1$

Proof. It suffices to show that \mathcal{Q} doesn't ramify in R_L whenever \mathcal{P} doesn't ramify in R_L . So suppose \mathcal{P} doesn't ramify in R_L ; then $\mathcal{P}R_L$ is a product of distinct primes in R_L . We also know that for some ideal I in $R_{K'}$ we have

$$\mathcal{P}R_L = \mathcal{P}R_{K'}R_L = I\mathcal{Q}R_L,$$

so \mathcal{Q} factors into distinct primes also, which means that $\Delta(R_L/R_{K'}) + \mathcal{Q} = 1$.

Theorem 26.5. Let A be a Dedekind domain with field of fractions K, let $K \subseteq L$, and $K \subseteq E$ be separable, finite extensions. Let R_E be the integral closure of A in E and let R_L be the integral closure of A in L. Suppose that $A\Delta(R_E/A) + A\Delta(R_L/A) = 1$. Then $C = R_E R_L$ is Dedekind.

Proof. Let $K' = E \cap L$ and let $R_{K'}$ be the integral closure of A in K' By Lemma 26.4, we must have $R_{K'}\Delta(R_E/R_{K'}) + R_{K'}\Delta(R_L/R_{K'}) + Q = 1$ for any prime Q of $R_{K'}$, so we must have $R_{K'}\Delta(R_E/R_{K'}) + R_{K'}\Delta(R_L/R_{K'}) = 1$. Proposition 26.3 then applies to R_ER_L , when R_E and R_L are considered as extensions of $R_{K'}$.

********************** Now, let's move on to the class group. Recall that for any integral domain R, we have notion of invertible ideals (recall that it is a fractional ideal with an inverse) and that we have an exact sequence

 $0 \longrightarrow \operatorname{Pri}(R) \longrightarrow \operatorname{Inv}(R) \longrightarrow \operatorname{Pic}(R) \longrightarrow 0.$

where $\operatorname{Pri}(R)$ is the set of principal ideals of R, $\operatorname{Inv}(R)$ is set of invertible ideals of R, and the group law is multiplication of fractional ideals. When R is Dedekind, we call $\operatorname{Pic}(R)$ the class group of R and denote it as $\operatorname{Cl}(R)$. When R is the integral closure \mathcal{O}_L of \mathbb{Z} in some number field L, we often write $\operatorname{Cl}(L)$ for $\operatorname{Cl}(\mathcal{O}_L)$. We also write $\Delta(L)$ for $\Delta(\mathcal{O}_L/\mathbb{Z})$. We want to prove the following.

Theorem 26.6. Let L be a number field. Then Cl(L) is finite.

We've already shown this $\mathbb{Z}[i]$. We showed that $\operatorname{Cl}(\mathbb{Z}[i]) = 1$, i.e. that it is a principal ideal domain. On the other hand, we've seen that $\operatorname{Pic}(\mathbb{Z}[\sqrt{19}]) \neq 1$ (this ring isn't Dedekind, but later we'll see Dedekind rings with nontrivial class groups.

How did we show that $\operatorname{Cl}(\mathbb{Z}[i]) = 1$? We took advantage of the fact that $\mathbb{Z}[i]$ forms a sublattice of \mathbb{C} . We'll try to do that in general.

Here is the idea... If we have a number field L of degree n over \mathbb{Q} , then we have n different embeddings of L into \mathbb{C} . They can be obtained by fixing one embedding $L \longrightarrow \mathbb{C}$ and then conjugating this embedding by elements in the cosets of H_L in $\operatorname{Gal}(M/\mathbb{Q})$ for M some Galois extension of \mathbb{Q} containing L. We'll use these to make B a full lattice in \mathbb{R}^n . What is a full lattice?

Definition 26.7. A lattice $\mathcal{L} \subset \mathbb{R}^n$ is a free \mathbb{Z} -module whose rank as a \mathbb{Z} -module is the equal to the dimension of the \mathbb{R} -vector space generated by \mathcal{L} . A full lattice $\mathcal{L} \subset \mathbb{R}^n$ is a free \mathbb{Z} -module of rank n that generates \mathbb{R}^n as a \mathbb{R} -vector space.

- **Example 26.8.** (1) $\mathbb{Z}[\theta]$ where $\theta^2 = 3$ is *not* a full lattice of \mathbb{R}^2 under the embedding $1 \mapsto 1$ and $\theta \mapsto \sqrt{3}$, since it generates an \mathbb{R} -vector space of dimension 1.
 - (2) $\mathbb{Z}[i]$ is full lattice in \mathbb{R}^2 where \mathbb{R}^2 is \mathbb{C} considered as an \mathbb{R} -vector space with basis 1, i over \mathbb{R} .

On the other hand, we can send $\mathbb{Z}[\theta]$ where $\theta^2 = 3$ into \mathbb{R}^2 in such a way that it is a full lattice in the following way. Let $\phi : 1 \mapsto (1, 1)$ and $\phi : \theta :\longrightarrow (\sqrt{3}, -\sqrt{3})$. In this case, we must generated \mathbb{R}^2 as an \mathbb{R}^2 vector space since (1, 1) and $(\sqrt{3}, -\sqrt{3})$ are linearly independent.

There are two different types of embeddings of L into \mathbb{C} . There are the real ones and the complex ones. An embedding $\sigma : L \longrightarrow \mathbb{C}$ is real if $\overline{\sigma(y)} = \sigma(y)$ for every $y \in L$ (the bar here denotes complex conjugation) and is complex otherwise. How can we tell which is which?

Suppose we have a number field L. We can write $L \cong \mathbb{Q}[X]/f(X)$ for some monic irreducible polynomial L with integer coefficients. Then by the Chinese remainder theorem $\mathbb{R}[X]/f(X) \cong \bigoplus_{i=1}^{m} \mathbb{R}[X]/f_i(X)$ where the f_i have coefficients in \mathbb{R} , are irreducible over \mathbb{R} , and $f_1 \dots f_m = g$ (note that the f_i are distinct since L is separable over \mathbb{Q}). We also know that each f_i is of degree 1 or 2. When f_i has degree 1, then $\mathbb{R}[X]/f_i(X)$ is isomorphic to \mathbb{R} and when f_i has degree 2, then $\mathbb{R}[X]/f_i(X)$ is isomorphic to \mathbb{C} . Since \mathbb{Q} has a natural embedding into \mathbb{R} , we obtain a natural embedding of

$$j: L \cong \mathbb{Q}[X]/f(X) \longrightarrow \bigoplus_{i=1}^m \mathbb{R}[X]/f_i(X).$$

Composing j with projection onto the *i*-th factor of

$$\bigoplus_{i=1}^{m} \mathbb{R}[X] / f_i(X)$$

then gives a map from $L \longrightarrow \mathbb{R}$ or $L \longrightarrow \mathbb{C}$. In fact, when deg $f_i = 2$ and $\mathbb{R}[X]/f_i(X)$ is \mathbb{C} we get two embeddings by composing with conjugation. The image of L is the same for these two embeddings, so we will want to link these two in some way...

Let's order the embeddings $\sigma_1, \ldots, \sigma_n$ $(n = [L : \mathbb{Q}])$ in the following way. We let $\sigma_1, \ldots, \sigma_s$ be real embeddings. The remaining embeddings come in pairs as explained above, so for $i = r + 1, r + 3, \ldots$, we let σ_i be a complex embedding and let $\sigma_{i+1} = \overline{\sigma_{i+1}}$. We let s be the number of complex embeddings. We have r + 2s = n.

Now, we can embed \mathcal{O}_L into \mathbb{R}^n by letting

$$h(y) = (\sigma_{1}(y), \dots, \sigma_{r}(y), \\ \Re(\sigma_{r+1}(y)), \Im(\sigma_{r+1}(y)), \dots, \Re(\sigma_{r+2(s-1)}(y)), \Im(\sigma_{r+2(s-1)}(y))) \\ = (\sigma_{1}(y), \dots, \sigma_{r}(y), \\ \frac{\sigma_{r+1}(y) + \sigma_{r+2}(y)}{2}, \frac{\sigma_{r+1}(y) - \sigma_{r+2}(y)}{2i}, \dots, \\ \frac{\sigma_{r+2(s-1)}(y) + \sigma_{r+2(s-1)}(y)}{2}, \frac{\sigma_{r+2(s-1)}(y) - \sigma_{r+2(s-1)+1}(y)}{2i}).$$

Let us also denote as h_i the map $h : \mathcal{O}_L \longrightarrow \mathbb{R}$ given by composing h with projection p_i onto the *i*-th coordinate of \mathbb{R}^n .

We will continue to use h and h_i as defined above. We will also continue to let s and r be as above and to let n = r + 2s be the degree $[L:\mathbb{Q}]$.