
Math 531 Tom Tucker
NOTES FROM CLASS 11/01

Let’s prove a few things about discriminants, before moving on.

Lemma 26.1. Let A be a Dedekind domain with field of fractions K,
let K ⊆ L, and K ⊆ E be separable, finite extensions that are linearly
disjoint over K. Let RE be the integral closure of A in E and let B be
an integral extension of A with field of fractions L. Let C = REB be the
compositum of RE and B in EL. Then ∆(C/RE)RE = ∆(B/A)RE.

Proof. It will suffice to show that for P be a prime of A andS = A \P ,
we have S−1RE∆(S−1C/S−1RE) = S−1RE∆(S−1B/AP), since

S−1RE∆(B/A) = S−1REAP∆(B/A) = S−1RE(S−1/AP).

Thus, we may assume that A = AP , that B = S−1B, RE = S−1RE,
C = S−1C. Let w1, . . . , wn be basis for B over A (we have assumed
now that A is a DVR). Then w1, . . . , wn must also generate C as an
RE-module. Moreover, since [EL : E] = [L : K] = n, since E and
L are linearly disjoint. Hence, w1, . . . , wn is a basis for C over RE.
We can use it to calculate both discriminants then. It is clear that
TL/K(y) = TLE/L(y) for any y ∈ L, since the trace is determined by
how ywi can be written in terms of the wi. We see then that

∆(C/B) = det[TLE/L(wiwj)] = det[TL/K(wiwj)] = ∆(RE/A),

and we are done. �

Proposition 26.2. Let A be a Dedekind domain with field of fractions
K, let K ⊆ L, and K ⊆ E be separable, finite extensions that are
linearly disjoint over K. Let RE be the integral closure of A in E and
let RL be the integral closure of A in L. Suppose that A∆(RE/A) +
A∆(RL/A) = 1. Then C = RERL is Dedekind.

Proof. Let M be a prime in RERL such that M ∩ A = P . Since
A∆(RE/A) + A∆(RL/A) = 1, either A∆(RE/A) or A∆(RL/A) is con-
tained in P . We may suppose WLOG that A∆(RL/A) isn’t contained
in P . It follows from the Lemma above that for any Q ∩ RE that is
prime and lies over P , the ideal RE∆(C/RE) doesn’t contain Q. Thus,
if S = RE \ Q, then S−1C is Dedekind, so M is invertible. So every
prime M of C is invertible and C must be Dedekind. �

We were in the middle of proving the following...

Proposition 26.3. Let A be a Dedekind domain with field of fractions
K, let K ⊆ L, and K ⊆ E be separable, finite extensions that are
linearly disjoint over K. Let RE be the integral closure of A in E and
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let RL be the integral closure of A in L. Suppose that A∆(RE/A) +
A∆(RL/A) = 1. Then C = RERL is Dedekind.

Proof. Let M be a prime in RERL such that M ∩ A = P . Since
A∆(RE/A) + A∆(RL/A) = 1, either A∆(RE/A) or A∆(RL/A) is not
contained in P . We may suppose WLOG that A∆(RL/A) doesn’t isn’t
contained in P . It follows from the Lemma above that for any Q∩RE

that is prime and lies over P , the ideal RE∆(C/RE) doesn’t contain
Q. Thus, if S = RE \ Q, then S−1C is Dedekind, so M is invertible.
So every prime M of C is invertible and C must be Dedekind. �

Lemma 26.4. Let K ⊂ K ′ ⊂ L be finite separable field extensions. Let
A be Dedekind with field of fractions K, and let RL and RK′ be integral
closures of A in L and K ′ respectively. Let Q ⊆ RK′ be a maximal ideal
with Q∩A = P. Then ∆(RL/A)+P = 1 implies ∆(RL/RK′)+Q = 1

Proof. It suffices to show that Q doesn’t ramify in RL whenever P
doesn’t ramify in RL. So suppose P doesn’t ramify in RL; then PRL is
a product of distinct primes in RL. We also know that for some ideal
I in RK′ we have

PRL = PRK′RL = IQRL,

so Q factors into distinct primes also, which means that ∆(RL/RK′)+
Q = 1. �

Theorem 26.5. Let A be a Dedekind domain with field of fractions
K, let K ⊆ L, and K ⊆ E be separable, finite extensions. Let RE be
the integral closure of A in E and let RL be the integral closure of A
in L. Suppose that A∆(RE/A) + A∆(RL/A) = 1. Then C = RERL is
Dedekind.

Proof. Let K ′ = E ∩ L and let RK′ be the integral closure of A in
K ′ By Lemma 26.4, we must have RK′∆(RE/RK′)+RK′∆(RL/RK′)+
Q = 1 for any prime Q of RK′ , so we must have RK′∆(RE/RK′) +
RK′∆(RL/RK′) = 1. Proposition 26.3 then applies to RERL, when RE

and RL are considered as extensions of RK′ . �

*********************** Now, let’s move on to the class group.
Recall that for any integral domain R, we have notion of invertible
ideals (recall that it is a fractional ideal with an inverse) and that we
have an exact sequence

0 −→ Pri(R) −→ Inv(R) −→ Pic(R) −→ 0.

where Pri(R) is the set of principal ideals of R, Inv(R) is set of invertible
ideals of R, and the group law is multiplication of fractional ideals.
When R is Dedekind, we call Pic(R) the class group of R and denote it
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as Cl(R). When R is the integral closure OL of Z in some number field
L, we often write Cl(L) for Cl(OL). We also write ∆(L) for ∆(OL/Z).
We want to prove the following.

Theorem 26.6. Let L be a number field. Then Cl(L) is finite.

We’ve already shown this Z[i]. We showed that Cl(Z[i]) = 1, i.e.
that it is a principal ideal domain. On the other hand, we’ve seen that
Pic(Z[

√
19]) 6= 1 (this ring isn’t Dedekind, but later we’ll see Dedekind

rings with nontrivial class groups.
How did we show that Cl(Z[i]) = 1? We took advantage of the fact

that Z[i] forms a sublattice of C. We’ll try to do that in general.
Here is the idea... If we have a number field L of degree n over

Q, then we have n different embeddings of L into C. They can be
obtained by fixing one embedding L −→ C and then conjugating this
embedding by elements in the cosets of HL in Gal(M/Q) for M some
Galois extension of Q containing L. We’ll use these to make B a full
lattice in Rn. What is a full lattice?

Definition 26.7. A lattice L ⊂ Rn is a free Z-module whose rank as a
Z-module is the equal to the dimension of the R-vector space generated
by L. A full lattice L ⊂ Rn is a free Z-module of rank n that generates
Rn as a R-vector space.

Example 26.8. (1) Z[θ] where θ2 = 3 is not a full lattice of R2

under the embedding 1 7→ 1 and θ 7→
√

3, since it generates an
R-vector space of dimension 1.

(2) Z[i] is full lattice in R2 where R2 is C considered as an R-vector
space with basis 1, i over R.

On the other hand, we can send Z[θ] where θ2 = 3 into R2 in such
a way that it is a full lattice in the following way. Let φ : 1 7→ (1, 1)
and φ : θ :−→ (

√
3,−

√
3). In this case, we must generated R2 as an

R2 vector space since (1, 1) and (
√

3,−
√

3) are linearly independent.
There are two different types of embeddings of L into C. There are

the real ones and the complex ones. An embedding σ : L −→ C is real if
σ(y) = σ(y) for every y ∈ L (the bar here denotes complex conjugation)
and is complex otherwise. How can we tell which is which?

Suppose we have a number field L. We can write L ∼= Q[X]/f(X) for
some monic irreducible polynomial L with integer coefficients. Then by
the Chinese remainder theorem R[X]/f(X) ∼=

⊕m
i=1 R[X]/fi(X) where

the fi have coefficients in R, are irreducible over R, and f1 . . . fm = g
(note that the fi are distinct since L is separable over Q). We also know
that each fi is of degree 1 or 2. When fi has degree 1, then R[X]/fi(X)
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is isomorphic to R and when fi has degree 2, then R[X]/fi(X) is iso-
morphic to C. Since Q has a natural embedding into R, we obtain a
natural embedding of

j : L ∼= Q[X]/f(X) −→
m⊕

i=1

R[X]/fi(X).

Composing j with projection onto the i-th factor of
m⊕

i=1

R[X]/fi(X)

then gives a map from L −→ R or L −→ C. In fact, when deg fi =
2 and R[X]/fi(X) is C we get two embeddings by composing with
conjugation. The image of L is the same for these two embeddings, so
we will want to link these two in some way...

Let’s order the embeddings σ1, . . . , σn (n = [L : Q]) in the following
way. We let σ1, . . . , σs be real embeddings. The remaining embeddings
come in pairs as explained above, so for i = r + 1, r + 3, . . . , we let σi

be a complex embedding and let σi+1 = σi+1. We let s be the number
of complex embeddings. We have r + 2s = n.

Now, we can embed OL into Rn by letting

h(y) = (σ1(y), . . . , σr(y),

<(σr+1(y)),=(σr+1(y)), . . . ,<(σr+2(s−1)(y)),=(σr+2(s−1)(y)))

=
(
σ1(y), . . . , σr(y),

σr+1(y) + σr+2(y)

2
,
σr+1(y)− σr+2(y)

2i
, . . . ,

σr+2(s−1)(y) + σr+2(s−1)(y)

2
,
σr+2(s−1)(y)− σr+2(s−1)+1(y)

2i

)
.

(1)

Let us also denote as hi the map h : OL −→ R given by composing h
with projection pi onto the i-th coordinate of Rn.

We will continue to use h and hi as defined above. We will also
continue to let s and r be as above and to let n = r + 2s be the degree
[L : Q].


