Math 531 Tom Tucker
NOTES FROM CLASS 11/01

Let’s prove a few things about discriminants, before moving on.
Lemma 26.1. Let A be a Dedekind domain with field of fractions K,
let K C L, and K C E be separable, finite extensions that are linearly
disjoint over K. Let Rg be the integral closure of A in E and let B be

an integral extension of A with field of fractions L. Let C = RgB be the
compositum of Rg and B in EL. Then A(C/Rp)Rr = A(B/A)Rg.

Proof. 1t will suffice to show that for P be a prime of A andS = A\ P,
we have ST'RpA(S™'C/S™'Rg) = ST'RpA(S™'B/Ap), since

ST'RpA(B/A) = ST'RpApA(BJ/A) = ST'Rp(S™/Ap).
Thus, we may assume that A = Ap, that B = S™'B, R = S™'Rp,

C = S71C. Let wy,...,w, be basis for B over A (we have assumed
now that A is a DVR). Then wy, ..., w, must also generate C' as an
Rp-module. Moreover, since [EL : E] = [L : K] = n, since E and
L are linearly disjoint. Hence, wy,...,w, is a basis for C' over Rg.

We can use it to calculate both discriminants then. It is clear that
Tr/k(y) = Tre/(y) for any y € L, since the trace is determined by
how yw; can be written in terms of the w;. We see then that

and we are done. U

Proposition 26.2. Let A be a Dedekind domain with field of fractions
K, let K C L, and K C FE be separable, finite extensions that are
linearly disjoint over K. Let Rg be the integral closure of A in E and
let Ry, be the integral closure of A in L. Suppose that AA(Rg/A) +
AA(RL/A) =1. Then C = RgRy, is Dedekind.

Proof. Let M be a prime in RgR; such that M N A = P. Since
AA(Rg/A)+ AA(RL/A) = 1, either AA(Rg/A) or AA(RL/A) is con-
tained in P. We may suppose WLOG that AA(RL/A) isn’t contained
in P. It follows from the Lemma above that for any Q@ N Rg that is
prime and lies over P, the ideal RgA(C/Rg) doesn’t contain Q. Thus,
if S = Rg\ Q, then S7'C is Dedekind, so M is invertible. So every
prime M of C' is invertible and C' must be Dedekind. 0

We were in the middle of proving the following...

Proposition 26.3. Let A be a Dedekind domain with field of fractions
K, let K C L, and K C FE be separable, finite extensions that are

linearly disjoint over K. Let Rg be the integral closure of A in E and
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let Ry, be the integral closure of A in L. Suppose that AA(Rg/A) +
AA(RL/A) =1. Then C = RgRy, is Dedekind.

Proof. Let M be a prime in RgR; such that M N A = P. Since
AA(Rg/A) + AA(RL/A) = 1, either AA(Rg/A) or AA(RL/A) is not
contained in P. We may suppose WLOG that AA(R;/A) doesn’t isn’t
contained in P. It follows from the Lemma above that for any QN Rg
that is prime and lies over P, the ideal RgA(C/Rg) doesn’t contain
Q. Thus, if S = Rg \ Q, then S7'C is Dedekind, so M is invertible.
So every prime M of C' is invertible and C' must be Dedekind. O

Lemma 26.4. Let K C K' C L be finite separable field extensions. Let
A be Dedekind with field of fractions K, and let Ry, and Ry be integral
closures of A in L and K’ respectively. Let Q C Ry be a maximal ideal

with QNA =P. Then A(R/A)+P =1 implies A(R./Rr)+Q =1

Proof. Tt suffices to show that Q doesn’t ramify in R; whenever P
doesn’t ramify in R;. So suppose P doesn’t ramify in Ry ; then PRy is
a product of distinct primes in R;. We also know that for some ideal
I in Ry we have

PRy, =PRxg R, =1QR,,
so Q factors into distinct primes also, which means that A(Ry/Rk/) +
Q=1 O

Theorem 26.5. Let A be a Dedekind domain with field of fractions
K, let K C L, and K C E be separable, finite extensions. Let Rg be
the integral closure of A in E and let Ry be the integral closure of A
in L. Suppose that AAN(Rg/A) + AA(Rp/A) =1. Then C = RgRy, is
Dedekind.

Proof. Let K' = E N L and let Ry be the integral closure of A in
K’ By Lemma 26.4, we must have Rx'A(Rg/Ry/) + R A(Rp/Ryr) +
Q = 1 for any prime Q of Rk, so we must have Rix/A(Rg/Ry/) +
Rx'A(Rp/Ry/) = 1. Proposition 26.3 then applies to Rg Ry, when Rg
and R are considered as extensions of Ry. ]

oiicciibicsbisioceiicce s Now, let’s move on to the class group.
Recall that for any integral domain R, we have notion of invertible
ideals (recall that it is a fractional ideal with an inverse) and that we
have an exact sequence

0 — Pri(R) — Inv(R) — Pic(R) — 0.
where Pri(R) is the set of principal ideals of R, Inv(R) is set of invertible

ideals of R, and the group law is multiplication of fractional ideals.
When R is Dedekind, we call Pic(R) the class group of R and denote it
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as CI(R). When R is the integral closure Op, of Z in some number field

L, we often write CI(L) for C1(Or). We also write A(L) for A(OL/Z).
We want to prove the following.

Theorem 26.6. Let L be a number field. Then Cl(L) is finite.

We've already shown this Z[i]. We showed that Cl(Z[i]) = 1, i.e.
that it is a principal ideal domain. On the other hand, we’ve seen that
Pic(Z[/19]) # 1 (this ring isn’t Dedekind, but later we’ll see Dedekind
rings with nontrivial class groups.

How did we show that CI(Z[i]) = 17 We took advantage of the fact
that Z[i] forms a sublattice of C. We'll try to do that in general.

Here is the idea... If we have a number field L of degree n over
Q, then we have n different embeddings of L into C. They can be
obtained by fixing one embedding L — C and then conjugating this
embedding by elements in the cosets of Hy, in Gal(M/Q) for M some
Galois extension of Q containing L. We'll use these to make B a full
lattice in R™. What is a full lattice?

Definition 26.7. A lattice £ C R" is a free Z-module whose rank as a
Z-module is the equal to the dimension of the R-vector space generated
by L. A full lattice £L C R" is a free Z-module of rank n that generates
R"™ as a R-vector space.

Example 26.8. (1) Z[f] where 6§ = 3 is not a full lattice of R?
under the embedding 1 — 1 and 6 — +/3, since it generates an
R-vector space of dimension 1.

(2) Z[d] is full lattice in R? where R? is C considered as an R-vector
space with basis 1,7 over R.

On the other hand, we can send Z[f] where #* = 3 into R? in such
a way that it is a full lattice in the following way. Let ¢ : 1 — (1,1)
and ¢ : 0 :—> (\/5, —\/g) In this case, we must generated R? as an
R? vector space since (1,1) and (v/3, —v/3) are linearly independent.

There are two different types of embeddings of L into C. There are
the real ones and the complex ones. An embedding o : L — C is real if
o(y) = o(y) for every y € L (the bar here denotes complex conjugation)
and is complex otherwise. How can we tell which is which?

Suppose we have a number field L. We can write L = Q[X]/f(X) for
some monic irreducible polynomial L with integer coefficients. Then by
the Chinese remainder theorem R[X]/f(X) = @.", R[X]/fi(X) where
the f; have coefficients in R, are irreducible over R, and f;...f, =g

(note that the f; are distinct since L is separable over Q). We also know
that each f; is of degree 1 or 2. When f; has degree 1, then R[X]/f;(X)
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is isomorphic to R and when f; has degree 2, then R[X]/f;(X) is iso-
morphic to C. Since Q has a natural embedding into R, we obtain a
natural embedding of

j:L=Q[X] —>€BR 1/ fi(X

Composing j with projectlon onto the z—th factor of

EBR 1/ fi(X

then gives a map from L — R or L — C. In fact, when deg f; =
2 and R[X]/f:(X) is C we get two embeddings by composing with
conjugation. The image of L is the same for these two embeddings, so
we will want to link these two in some way...

Let’s order the embeddings o1, ...,0, (n = [L : Q]) in the following
way. We let 01,...,0, be real embeddings. The remaining embeddings
come in pairs as explained above, so for i =r+ 1,7+ 3,..., we let o;
be a complex embedding and let ;.1 = 7;77. We let s be the number
of complex embeddings. We have r + 2s = n.

Now, we can embed O, into R™ by letting

hy) = (01(y), .., 0:(y),
R(or1(y), S(or11 (), - - - §R<UT+2(S—1)(y))7 %(0r+2(s—1)(y)))

] - (01(9)7 . aO-T(y)a
W o) + o) 0r1(y) — 0riny)
2 ’ 21 Y
0r+2(s—1)(y> + UT+2(s—1)(y) UT+2(s—1)(y) - 0r+2(s—1)+1(y))
2 ’ 21 ’

Let us also denote as h; the map h : O, — R given by composing h
with projection p; onto the ¢-th coordinate of R".

We will continue to use h and h; as defined above. We will also
continue to let s and r be as above and to let n = r + 2s be the degree

L: Q).



