
Math 531 Tom Tucker
NOTES FROM CLASS 10/29

Theorem 25.1. Let q be an odd prime.
(

2
q

)
= (−1)(q2−1)/8.

Proof. We’ll continue to work in Z[ξq]. The corollary about orders mod
p still applies, so all we need to do is figure out when 2 splits into an
even number of primes in Z[ξq]. To check how 2RE factors, for E the
unique quadratic extension of in Z[ξq], we’ll have to work with

α =
1 +

√
ε(q)q

2

instead of
√

ε(q)q, since Z[
√

ε(q)q] is not integrally closed when local-
ized at 2. The minimal polynomial for α is

x2 − x +
1− ε(q)q

4
.

We can check that this splits into linear factors over 2 if and only

if 1−ε(q)q
4

≡ 0 (mod 2). We check that when ε(q) = 1, this means
that q ≡ 1 (mod 8) and that when ε(q) = −1, this means that q ≡ 7

(mod 8). Thus
(

2
q

)
= 1 if and only if q ≡ 7 (mod 8) or q ≡ 1 (mod 8).

This is equivalent to saying that (q2 − 1)/8 ≡ 0 (mod 2), and we are
done. �

************ One more thing before finishing up cyclotomic fields.

Theorem 25.2. Let m be any positive integer. Then Z[ξm] is Dedekind
and the field Q(ξm) is Galois of degree of φ(m) over Q.

Proof. It is obvious that Q(ξm) is Galois. Indeed, ξm
m = 1 implies

σ(ξm)m = 1 for any conjugate σ(ξm) of ξm. But every root of xm−1 = 0
is a power of ξm so is in Q(ξm). Hence, Q(ξm) is the splitting field for
the minimal monic of ξm and is therefore Galois.

We will show that Z[ξm] is Dedekind and that Q(ξm) has degree φ(m)
over Q by induction on the number r of distinct prime factors p of m.
We have already treated the case r = 1. Then writing m = m′q where
m′ has r−1 distinct prime factors and q is a prime power (which is prime
to m′). The discriminant of Z[ξ′m] divides (m′)m′

(the discriminant of
xm′ − 1) so is prime to the discriminant of Z[ξq] (since (m′, q) = 1). By
last week’s homework #4, it follows that Z[ξq, ξm′ ] is Dedekind, since
Z[ξ′m] and Z[ξq] are Dedekind by the inductive hypothesis. Since ξq

m is
a primitive m′-th root of unity and ξm′

m is primitive q-th root of unity,

Z[ξm] = Z[ξq, ξm′ ],
1



2

so Z[ξm] is Dedekind. To calculate the degree of Q[ξm] it will suffice
to show that the degree of Q[ξm] over Q[ξm′ ] is φ(q) by the inductive
hypothesis. To prove it suffices to show that Φq(X) is irreducible over
Z[ξm′ ].

To calculate the degree of Q[ξm] it will suffice to show that the degree
of Q[ξm] over Q[ξm′ ] is φ(q) by the inductive hypothesis. If q = pa, we
know that pZ[ξq] factors as Z[ξq](1− ξq)

φ(q). Thus,

pZ[ξm] = Z[ξq](1− ξq)
φ(q)Z[ξm] = Iφ(q),

for some ideal I of Z[ξm].
We also know that since ∆(Z[ξm′ ]/Z) is prime to p, we have

pZ[ξm′ ] = Q1 · Qt

for distinct coprime Qi. It follows that for each Qi we must have

QiZ[ξm] = Mφ(q)
i for some prime Mi in Z[ξm]. This means that

[Q(ξm) : Q(ξm′)] ≥ φ(q).

Since [Q(ξm) : Q(ξm′)] ≤ φ(q), this means that

[Q(ξm) : Q(ξm′)] = φ(q),

as desired. �


