Math 531 Tom Tucker NOTES FROM CLASS 10/29

Theorem 25.1. Let *q* be an odd prime. $\left(\frac{2}{q}\right) = (-1)^{(q^2-1)/8}$.

Proof. We'll continue to work in $\mathbb{Z}[\xi_q]$. The corollary about orders mod p still applies, so all we need to do is figure out when 2 splits into an even number of primes in $\mathbb{Z}[\xi_q]$. To check how $2R_E$ factors, for E the unique quadratic extension of in $\mathbb{Z}[\xi_q]$, we'll have to work with

$$\alpha = \frac{1 + \sqrt{\epsilon(q)q}}{2}$$

instead of $\sqrt{\epsilon(q)q}$, since $\mathbb{Z}[\sqrt{\epsilon(q)q}]$ is not integrally closed when localized at 2. The minimal polynomial for α is

$$x^2 - x + \frac{1 - \epsilon(q)q}{4}.$$

We can check that this splits into linear factors over 2 if and only if $\frac{1-\epsilon(q)q}{4} \equiv 0 \pmod{2}$. We check that when $\epsilon(q) = 1$, this means that $q \equiv 1 \pmod{8}$ and that when $\epsilon(q) = -1$, this means that $q \equiv 7 \pmod{8}$. Thus $\binom{2}{q} = 1$ if and only if $q \equiv 7 \pmod{8}$ or $q \equiv 1 \pmod{8}$. This is equivalent to saying that $(q^2 - 1)/8 \equiv 0 \pmod{2}$, and we are done.

********** One more thing before finishing up cyclotomic fields.

Theorem 25.2. Let *m* be any positive integer. Then $\mathbb{Z}[\xi_m]$ is Dedekind and the field $\mathbb{Q}(\xi_m)$ is Galois of degree of $\phi(m)$ over \mathbb{Q} .

Proof. It is obvious that $\mathbb{Q}(\xi_m)$ is Galois. Indeed, $\xi_m^m = 1$ implies $\sigma(\xi_m)^m = 1$ for any conjugate $\sigma(\xi_m)$ of ξ_m . But every root of $x^m - 1 = 0$ is a power of ξ_m so is in $\mathbb{Q}(\xi_m)$. Hence, $\mathbb{Q}(\xi_m)$ is the splitting field for the minimal monic of ξ_m and is therefore Galois.

We will show that $\mathbb{Z}[\xi_m]$ is Dedekind and that $\mathbb{Q}(\xi_m)$ has degree $\phi(m)$ over \mathbb{Q} by induction on the number r of distinct prime factors p of m. We have already treated the case r = 1. Then writing m = m'q where m' has r-1 distinct prime factors and q is a prime power (which is prime to m'). The discriminant of $\mathbb{Z}[\xi'_m]$ divides $(m')^{m'}$ (the discriminant of $x^{m'}-1$) so is prime to the discriminant of $\mathbb{Z}[\xi_q]$ (since (m',q)=1). By last week's homework #4, it follows that $\mathbb{Z}[\xi_q,\xi_{m'}]$ is Dedekind, since $\mathbb{Z}[\xi'_m]$ and $\mathbb{Z}[\xi_q]$ are Dedekind by the inductive hypothesis. Since ξ^q_m is a primitive m'-th root of unity and $\xi^{m'}_m$ is primitive q-th root of unity,

$$\mathbb{Z}[\xi_m] = \mathbb{Z}[\xi_q, \xi_{m'}],$$

so $\mathbb{Z}[\xi_m]$ is Dedekind. To calculate the degree of $\mathbb{Q}[\xi_m]$ it will suffice to show that the degree of $\mathbb{Q}[\xi_m]$ over $\mathbb{Q}[\xi_{m'}]$ is $\phi(q)$ by the inductive hypothesis. To prove it suffices to show that $\Phi_q(X)$ is irreducible over $\mathbb{Z}[\xi_{m'}]$.

To calculate the degree of $\mathbb{Q}[\xi_m]$ it will suffice to show that the degree of $\mathbb{Q}[\xi_m]$ over $\mathbb{Q}[\xi_{m'}]$ is $\phi(q)$ by the inductive hypothesis. If $q = p^a$, we know that $p\mathbb{Z}[\xi_q]$ factors as $\mathbb{Z}[\xi_q](1 - \xi_q)^{\phi(q)}$. Thus,

$$p\mathbb{Z}[\xi_m] = \mathbb{Z}[\xi_q](1-\xi_q)^{\phi(q)}\mathbb{Z}[\xi_m] = I^{\phi(q)},$$

for some ideal I of $\mathbb{Z}[\xi_m]$.

We also know that since $\Delta(\mathbb{Z}[\xi_{m'}]/\mathbb{Z})$ is prime to p, we have

 $p\mathbb{Z}[\xi_{m'}] = \mathcal{Q}_1 \cdot \mathcal{Q}_t$

for distinct coprime Q_i . It follows that for each Q_i we must have $Q_i \mathbb{Z}[\xi_m] = \mathcal{M}_i^{\phi(q)}$ for some prime \mathcal{M}_i in $\mathbb{Z}[\xi_m]$. This means that

 $[\mathbb{Q}(\xi_m):\mathbb{Q}(\xi_{m'})] \ge \phi(q).$

Since $[\mathbb{Q}(\xi_m) : \mathbb{Q}(\xi_{m'})] \leq \phi(q)$, this means that

$$[\mathbb{Q}(\xi_m):\mathbb{Q}(\xi_{m'})]=\phi(q)$$

as desired.