Math 531 Tom Tucker

NOTES FROM CLASS 10/29
Theorem 25.1. Let q be an odd prime. $\left(\frac{2}{q}\right)=(-1)^{\left(q^{2}-1\right) / 8}$.
Proof. We'll continue to work in $\mathbb{Z}\left[\xi_{q}\right]$. The corollary about orders mod p still applies, so all we need to do is figure out when 2 splits into an even number of primes in $\mathbb{Z}\left[\xi_{q}\right]$. To check how $2 R_{E}$ factors, for E the unique quadratic extension of in $\mathbb{Z}\left[\xi_{q}\right]$, we'll have to work with

$$
\alpha=\frac{1+\sqrt{\epsilon(q) q}}{2}
$$

instead of $\sqrt{\epsilon(q) q}$, since $\mathbb{Z}[\sqrt{\epsilon(q) q}]$ is not integrally closed when localized at 2 . The minimal polynomial for α is

$$
x^{2}-x+\frac{1-\epsilon(q) q}{4} .
$$

We can check that this splits into linear factors over 2 if and only if $\frac{1-\epsilon(q) q}{4} \equiv 0(\bmod 2)$. We check that when $\epsilon(q)=1$, this means that $q \equiv 1(\bmod 8)$ and that when $\epsilon(q)=-1$, this means that $q \equiv 7$ $(\bmod 8)$. Thus $\left(\frac{2}{q}\right)=1$ if and only if $q \equiv 7(\bmod 8)$ or $q \equiv 1(\bmod 8)$. This is equivalent to saying that $\left(q^{2}-1\right) / 8 \equiv 0(\bmod 2)$, and we are done.
************* One more thing before finishing up cyclotomic fields.
Theorem 25.2. Let m be any positive integer. Then $\mathbb{Z}\left[\xi_{m}\right]$ is Dedekind and the field $\mathbb{Q}\left(\xi_{m}\right)$ is Galois of degree of $\phi(m)$ over \mathbb{Q}.
Proof. It is obvious that $\mathbb{Q}\left(\xi_{m}\right)$ is Galois. Indeed, $\xi_{m}^{m}=1$ implies $\sigma\left(\xi_{m}\right)^{m}=1$ for any conjugate $\sigma\left(\xi_{m}\right)$ of ξ_{m}. But every root of $x^{m}-1=0$ is a power of ξ_{m} so is in $\mathbb{Q}\left(\xi_{m}\right)$. Hence, $\mathbb{Q}\left(\xi_{m}\right)$ is the splitting field for the minimal monic of ξ_{m} and is therefore Galois.

We will show that $\mathbb{Z}\left[\xi_{m}\right]$ is Dedekind and that $\mathbb{Q}\left(\xi_{m}\right)$ has degree $\phi(m)$ over \mathbb{Q} by induction on the number r of distinct prime factors p of m. We have already treated the case $r=1$. Then writing $m=m^{\prime} q$ where m^{\prime} has $r-1$ distinct prime factors and q is a prime power (which is prime to m^{\prime}). The discriminant of $\mathbb{Z}\left[\xi_{m}^{\prime}\right]$ divides $\left(m^{\prime}\right)^{m^{\prime}}$ (the discriminant of $x^{m^{\prime}}-1$) so is prime to the discriminant of $\mathbb{Z}\left[\xi_{q}\right]$ (since $\left(m^{\prime}, q\right)=1$). By last week's homework $\# 4$, it follows that $\mathbb{Z}\left[\xi_{q}, \xi_{m^{\prime}}\right]$ is Dedekind, since $\mathbb{Z}\left[\xi_{m}^{\prime}\right]$ and $\mathbb{Z}\left[\xi_{q}\right]$ are Dedekind by the inductive hypothesis. Since ξ_{m}^{q} is a primitive m^{\prime}-th root of unity and $\xi_{m}^{m^{\prime}}$ is primitive q-th root of unity,

$$
\mathbb{Z}\left[\xi_{m}\right]=\underset{1}{\mathbb{Z}}\left[\xi_{q}, \xi_{m^{\prime}}\right],
$$

so $\mathbb{Z}\left[\xi_{m}\right]$ is Dedekind. To calculate the degree of $\mathbb{Q}\left[\xi_{m}\right]$ it will suffice to show that the degree of $\mathbb{Q}\left[\xi_{m}\right]$ over $\mathbb{Q}\left[\xi_{m^{\prime}}\right]$ is $\phi(q)$ by the inductive hypothesis. To prove it suffices to show that $\Phi_{q}(X)$ is irreducible over $\mathbb{Z}\left[\xi_{m^{\prime}}\right]$.

To calculate the degree of $\mathbb{Q}\left[\xi_{m}\right]$ it will suffice to show that the degree of $\mathbb{Q}\left[\xi_{m}\right]$ over $\mathbb{Q}\left[\xi_{m^{\prime}}\right]$ is $\phi(q)$ by the inductive hypothesis. If $q=p^{a}$, we know that $p \mathbb{Z}\left[\xi_{q}\right]$ factors as $\mathbb{Z}\left[\xi_{q}\right]\left(1-\xi_{q}\right)^{\phi(q)}$. Thus,

$$
p \mathbb{Z}\left[\xi_{m}\right]=\mathbb{Z}\left[\xi_{q}\right]\left(1-\xi_{q}\right)^{\phi(q)} \mathbb{Z}\left[\xi_{m}\right]=I^{\phi(q)}
$$

for some ideal I of $\mathbb{Z}\left[\xi_{m}\right]$.
We also know that since $\Delta\left(\mathbb{Z}\left[\xi_{m^{\prime}}\right] / \mathbb{Z}\right)$ is prime to p, we have

$$
p \mathbb{Z}\left[\xi_{m^{\prime}}\right]=\mathcal{Q}_{1} \cdot \mathcal{Q}_{t}
$$

for distinct coprime \mathcal{Q}_{i}. It follows that for each \mathcal{Q}_{i} we must have $\mathcal{Q}_{i} \mathbb{Z}\left[\xi_{m}\right]=\mathcal{M}_{i}^{\phi(q)}$ for some prime \mathcal{M}_{i} in $\mathbb{Z}\left[\xi_{m}\right]$. This means that

$$
\left[\mathbb{Q}\left(\xi_{m}\right): \mathbb{Q}\left(\xi_{m^{\prime}}\right)\right] \geq \phi(q) .
$$

Since $\left[\mathbb{Q}\left(\xi_{m}\right): \mathbb{Q}\left(\xi_{m^{\prime}}\right)\right] \leq \phi(q)$, this means that

$$
\left[\mathbb{Q}\left(\xi_{m}\right): \mathbb{Q}\left(\xi_{m^{\prime}}\right)\right]=\phi(q),
$$

as desired.

