
Math 531 Tom Tucker
NOTES FROM CLASS 10/27

Recall from last time...
We can use cyclotomic fields to prove the quadratic reciprocity the-

orem. Recall the definition the quadratic residue symbol for a prime
p. It is defined for an integer a coprime to p as(

a

p

)
=

{
1 : a is square (mod p)

−1 : a is not a square (mod p)

When p = 2,
(

a
2

)
= 1 for any odd a. When p is odd and (a, p) = 1,

we have

(1)
(

a
p

)
= a(p−1)/2;

(2)
(

ab
p

)
=

(
a
p

) (
b
p

)
;

(3)
(
−1
p

)
= (−1)(p−1)/2;

(4)
(

a
p

)
= (−1)

p−1
ord(a) , where ordp(a) denotes the order of a (mod p).

Properties 2, 3, and 4 follow immediately from 1. Property 1 follows
from the fact that (Z/pZ)∗ has a primitive root θ and a is square mod
p if and only if a = θr for some even r. Now, (θr)(p−1)/2 = 1 if r is even
and −1 is r is odd, so we are done.

Continuing with quadratic reciprocity...
From now on, p and q are distinct primes. Let’s also assume that q

is odd. Quadratic reciprocity relates
(

p
q

)
with

(
q
p

)
. It says that for p

and q odd we have (
p

q

) (
q

p

)
= (−1)

(q−1)(p−1)
4 .

What has this got to do with cyclotomic fields? The first fact is that(
p
q

)
= 1 if and only if x2−p factors mod q. When p ≡ 1 (mod 4), and

B = Z[
√

q], this is the same thing as saying that

pB = Q1Q2

(one prime for each factor). Why is this helpful? Because Q(ξq) con-
tains a unique quadratic field.

Lemma 24.1. The field Q(ξq) contains exactly one quadratic field. It

is Q(
√

(−1)(q−1)/2q).

Proof. The field Q(ξq) is Galois since all the conjugates of ξq are powers
of ξq and hence Φq splits completely in Q(ξq). It is clear that the Galois
group is (Z/aZ)∗ which is cyclic of even order, so there is exactly one

1



2

subgroup of index 2, and one subfield of degree 2. Since Q(ξq) only
ramifies at p, this quadratic field cannot ramify at 2, so it must have
discriminant divisible only by q. There are only two possibilities Q(

√
q)

and Q(
√
−q). By checking the ramification at 2, we see that if q ≡ 1

(mod 4) it is Q(
√

q), if q ≡ 3 (mod 4), then −q ≡ 1 (mod 4), so it
must be Q(

√
−q). �

Let us denote (−1)(q−1)/2 as ε(q).

Proposition 24.2. Suppose that p is odd. There are an even number
of distinct primes Q of Z[ξq] lying over p if and only if pZ[

√
ε(q)qq]

factors as two distinct primes.

Proof. Let M be a prime in Z[ξq] such that M∩Z = pZ. Let G denote

the Galois group Gal(Q(ξq)/Q), let E denote Q(
√

ε(q)q), let GE denote
the part of G that acts identically on E, and let D be the part of G
that sends M to itself. Recall that G acts transitively on the set of
primes of Z[ξq] lying over p. Thus, the number of primes lying over p
is equal to [G : D]. The index [G : D] is even if and only if D ⊆ GE,
since GE is the unique subgroup of index 2 in G.

Now, let’s let Q be a prime of Z[
√

ε(q)q] for which Q∩Z = pZ. The
group GE acts transitively on the set of primes of Z[ξq] lying over Q. If
this set is the same as the set of all primes in Z[ξq] lying over P , then

Q must be the only prime in Z[
√

ε(q)q] lying over p. Otherwise, there

must be two primes in Z[
√

ε(q)q] lying over p.
We claim that GE acts transitively on the set of all M lying over p if

and only if D is not contained in GE. Note that if D is not contained
in GE, then the [GE : D∩GE] = [G : D], which means that the number
of primes in the G-orbit of M is the same as the number of primes in
GE-orbit of M, which means that GE acts transitively on the M lying
over p. If D ⊆ GE, then [G : D] = 2[GE : D] and GE does not act
transitively on this set. �

Corollary 24.3. Suppose that p is odd. Then
(

ε(q)q
p

)
= 1 if and only

if p splits into an even number of primes in Z[ξq].

Proof.
(

ε(q)q
p

)
= 1 if and only if x2−ε(q)q factors over p, which happens

if and only if pZ[
√

ε(q)q] factors as two distinct primes, since Z[
√

ε(q)q]
localized at an odd prime of Z is integrally closed. �

Let Tp denote the number of primes lying over p in Z[ξq]. From what
we’ve just seen, (−1)TP = ε(q).

The next two proposition and corollary work for any p (including 2).
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Proposition 24.4. The degree of the field extension Fp[ξq] is equal to
ordq(p) (the order of p in Fq).

Proof. We know that any finite field is cyclic and that the order of Fpf

is pf − 1. Thus, ξq ∈ Fpf if and only if pf ≡ 1 (mod q). Therefore, the
degree of degree of the field extension Fp[ξq] is equal to the smallest f
such that pf ≡ 1 (mod q), which is equal to the order of p in Fq. �

Corollary 24.5. Suppose that there are Tp primes in Z[ξq] lying above
p. Then ordq(p) is equal to (q − 1)/Tp.

Proof. Since p doesn’t ramify, it must factor as

pZ[ξq] = Q1 · · · QTp .

Therefore, the relative degree [Z[ξq]/Qi : Z/pZ] = (q − 1)/m for every
i. Since

Z[ξq]/Qi
∼= Fp[ξq],

it follows from the preceding proposition that the order of p (mod q)
is equal to (q − 1)/(TP ). �

Theorem 24.6. (Quadratic reciprocity for odd primes) Let p and q be
odd primes, p 6= q. Then(

p

q

) (
q

p

)
= (−1)(p−1)(q−1)/4.

Proof. Let ordq(p) denote the order of p (mod q). We see that(
ε(q)q

p

)
= (−1)Tp (Corollary 24.3)

= (−1)
q−1

ordq(p) (Corollary 24.5)

=

(
p

q

)
(Property (iv)).

Thus,(
p

q

)
=

(
ε(q)q

p

)
=

(
−1(q−1)/2

p

) (
q

p

)
= (−1)(p−1)(q−1)/4

(
q

p

)
.

Multiplying
(

p
q

)
by

(
q
p

)
then finishes the proof. �

Next time: quadratic reciprocity for p = 2.


