Math 531 Tom Tucker

NOTES FROM CLASS 10/27
Recall from last time...
We can use cyclotomic fields to prove the quadratic reciprocity theorem. Recall the definition the quadratic residue symbol for a prime p. It is defined for an integer a coprime to p as

$$
\left(\frac{a}{p}\right)=\left\{\begin{aligned}
& 1: \\
&-1: \\
& a \text { is square } \quad(\bmod p) \\
&(\bmod p)
\end{aligned}\right.
$$

When $p=2,\left(\frac{a}{2}\right)=1$ for any odd a. When p is odd and $(a, p)=1$, we have
(1) $\left(\frac{a}{p}\right)=a^{(p-1) / 2}$;
(2) $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$;
(3) $\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}$;
(4) $\left(\frac{a}{p}\right)=(-1)^{\frac{p-1}{\operatorname{ord}(a)}}$, where $\operatorname{ord}_{p}(a)$ denotes the order of $a(\bmod p)$.

Properties 2 , 3 , and 4 follow immediately from 1 . Property 1 follows from the fact that $(\mathbb{Z} / p \mathbb{Z})^{*}$ has a primitive root θ and a is square \bmod p if and only if $a=\theta^{r}$ for some even r. Now, $\left(\theta^{r}\right)^{(p-1) / 2}=1$ if r is even and -1 is r is odd, so we are done.

Continuing with quadratic reciprocity...
From now on, p and q are distinct primes. Let's also assume that q is odd. Quadratic reciprocity relates $\left(\frac{p}{q}\right)$ with $\left(\frac{q}{p}\right)$. It says that for p and q odd we have

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{(q-1)(p-1)}{4}} .
$$

What has this got to do with cyclotomic fields? The first fact is that $\left(\frac{p}{q}\right)=1$ if and only if $x^{2}-p$ factors $\bmod q$. When $p \equiv 1(\bmod 4)$, and $B=\mathbb{Z}[\sqrt{q}]$, this is the same thing as saying that

$$
p B=\mathcal{Q}_{1} \mathcal{Q}_{2}
$$

(one prime for each factor). Why is this helpful? Because $\mathbb{Q}\left(\xi_{q}\right)$ contains a unique quadratic field.

Lemma 24.1. The field $\mathbb{Q}\left(\xi_{q}\right)$ contains exactly one quadratic field. It is $\mathbb{Q}\left(\sqrt{(-1)^{(q-1) / 2} q}\right)$.
Proof. The field $\mathbb{Q}\left(\xi_{q}\right)$ is Galois since all the conjugates of ξ_{q} are powers of ξ_{q} and hence Φ_{q} splits completely in $\mathbb{Q}\left(\xi_{q}\right)$. It is clear that the Galois group is $(\mathbb{Z} / a \mathbb{Z})^{*}$ which is cyclic of even order, so there is exactly one
subgroup of index 2 , and one subfield of degree 2 . Since $\mathbb{Q}\left(\xi_{q}\right)$ only ramifies at p, this quadratic field cannot ramify at 2 , so it must have discriminant divisible only by q. There are only two possibilities $\mathbb{Q}(\sqrt{q})$ and $\mathbb{Q}(\sqrt{-q})$. By checking the ramification at 2 , we see that if $q \equiv 1$ $(\bmod 4)$ it is $\mathbb{Q}(\sqrt{q})$, if $q \equiv 3(\bmod 4)$, then $-q \equiv 1(\bmod 4)$, so it must be $\mathbb{Q}(\sqrt{-q})$.

Let us denote $(-1)^{(q-1) / 2}$ as $\epsilon(q)$.
Proposition 24.2. Suppose that p is odd. There are an even number of distinct primes \mathcal{Q} of $\mathbb{Z}\left[\xi_{q}\right]$ lying over p if and only if $p \mathbb{Z}[\sqrt{\epsilon(q) q} q]$ factors as two distinct primes.

Proof. Let \mathcal{M} be a prime in $\mathbb{Z}\left[\xi_{q}\right]$ such that $\mathcal{M} \cap \mathbb{Z}=p \mathbb{Z}$. Let G denote the Galois group $\operatorname{Gal}\left(\mathbb{Q}\left(\xi_{q}\right) / \mathbb{Q}\right)$, let E denote $\mathbb{Q}(\sqrt{\epsilon(q) q})$, let G_{E} denote the part of G that acts identically on E, and let D be the part of G that sends \mathcal{M} to itself. Recall that G acts transitively on the set of primes of $\mathbb{Z}\left[\xi_{q}\right]$ lying over p. Thus, the number of primes lying over p is equal to $[G: D]$. The index $[G: D]$ is even if and only if $D \subseteq G_{E}$, since G_{E} is the unique subgroup of index 2 in G.

Now, let's let \mathcal{Q} be a prime of $\mathbb{Z}[\sqrt{\epsilon(q) q}]$ for which $\mathcal{Q} \cap \mathbb{Z}=p \mathbb{Z}$. The group G_{E} acts transitively on the set of primes of $\mathbb{Z}\left[\xi_{q}\right]$ lying over \mathcal{Q}. If this set is the same as the set of all primes in $\mathbb{Z}\left[\xi_{q}\right]$ lying over \mathcal{P}, then \mathcal{Q} must be the only prime in $\mathbb{Z}[\sqrt{\epsilon(q) q}]$ lying over p. Otherwise, there must be two primes in $\mathbb{Z}[\sqrt{\epsilon(q) q}]$ lying over p.

We claim that G_{E} acts transitively on the set of all \mathcal{M} lying over p if and only if D is not contained in G_{E}. Note that if D is not contained in G_{E}, then the $\left[G_{E}: D \cap G_{E}\right]=[G: D]$, which means that the number of primes in the G-orbit of \mathcal{M} is the same as the number of primes in G_{E}-orbit of \mathcal{M}, which means that G_{E} acts transitively on the \mathcal{M} lying over p. If $D \subseteq G_{E}$, then $[G: D]=2\left[G_{E}: D\right]$ and G_{E} does not act transitively on this set.

Corollary 24.3. Suppose that p is odd. Then $\left(\frac{\epsilon(q) q}{p}\right)=1$ if and only if p splits into an even number of primes in $\mathbb{Z}\left[\xi_{q}\right]$.

Proof. $\left(\frac{\epsilon(q) q}{p}\right)=1$ if and only if $x^{2}-\epsilon(q) q$ factors over p, which happens if and only if $p \mathbb{Z}[\sqrt{\epsilon(q) q}]$ factors as two distinct primes, since $\mathbb{Z}[\sqrt{\epsilon(q) q}]$ localized at an odd prime of \mathbb{Z} is integrally closed.

Let T_{p} denote the number of primes lying over p in $\mathbb{Z}\left[\xi_{q}\right]$. From what we've just seen, $(-1)^{T_{P}}=\epsilon(q)$.

The next two proposition and corollary work for any p (including 2).

Proposition 24.4. The degree of the field extension $\mathbf{F}_{p}\left[\xi_{q}\right]$ is equal to $\operatorname{ord}_{q}(p)$ (the order of p in \mathbf{F}_{q}).
Proof. We know that any finite field is cyclic and that the order of $\mathbf{F}_{p} f$ is $p^{f}-1$. Thus, $\xi_{q} \in \mathbf{F}_{p^{f}}$ if and only if $p^{f} \equiv 1(\bmod q)$. Therefore, the degree of degree of the field extension $\mathbf{F}_{p}\left[\xi_{q}\right]$ is equal to the smallest f such that $p^{f} \equiv 1(\bmod q)$, which is equal to the order of p in \mathbf{F}_{q}.
Corollary 24.5. Suppose that there are T_{p} primes in $\mathbb{Z}\left[\xi_{q}\right]$ lying above p. Then $\operatorname{ord}_{q}(p)$ is equal to $(q-1) / T_{p}$.

Proof. Since p doesn't ramify, it must factor as

$$
p \mathbb{Z}\left[\xi_{q}\right]=\mathcal{Q}_{1} \cdots \mathcal{Q}_{T_{p}} .
$$

Therefore, the relative degree $\left[\mathbb{Z}\left[\xi_{q}\right] / \mathcal{Q}_{i}: \mathbb{Z} / p \mathbb{Z}\right]=(q-1) / m$ for every i. Since

$$
\mathbb{Z}\left[\xi_{q}\right] / \mathcal{Q}_{i} \cong \mathbf{F}_{p}\left[\xi_{q}\right],
$$

it follows from the preceding proposition that the order of $p(\bmod q)$ is equal to $(q-1) /\left(T_{P}\right)$.
Theorem 24.6. (Quadratic reciprocity for odd primes) Let p and q be odd primes, $p \neq q$. Then

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{(p-1)(q-1) / 4}
$$

Proof. Let $\operatorname{ord}_{q}(p)$ denote the order of $p(\bmod q)$. We see that

$$
\begin{aligned}
\left(\frac{\epsilon(q) q}{p}\right) & =(-1)^{T_{p}} \quad(\text { Corollary 24.3) } \\
& =(-1)^{\frac{q-1}{\operatorname{ord} q(p)}} \quad(\text { Corollary 24.5) } \\
& =\left(\frac{p}{q}\right) \quad(\text { Property (iv) }) .
\end{aligned}
$$

Thus,

$$
\left(\frac{p}{q}\right)=\left(\frac{\epsilon(q) q}{p}\right)=\left(\frac{-1^{(q-1) / 2}}{p}\right)\left(\frac{q}{p}\right)=(-1)^{(p-1)(q-1) / 4}\left(\frac{q}{p}\right) .
$$

Multiplying $\left(\frac{p}{q}\right)$ by $\left(\frac{q}{p}\right)$ then finishes the proof.
Next time: quadratic reciprocity for $p=2$.

