Math 531 Tom Tucker
NOTES FROM CLASS 10/25

Theorem 24.1. The polynomial ®,(X) is irreducible and is therefore
the minimal monic for &,.

Proof. ®,(1) =14+1*+---+ 1771 =p. Also

e,1)= [ X-¢&)= J[ wt—¢€)=u(1—g)",

1<k<gq 1<k<gq
(k,q)=1 (k,q)=1

where u; and u are units and ¢ is the Euler ¢-function. Similarly, for
any k such that (k,q) = 1. We have v(1 — &,)?@ = p for a unit v.
It follows that (1 — &¥) is not a unit for (k,q) = 1. Now, if ®,(X) =
F(X)G(X) for polynomials F' and G over Z, either F'(1) = %1 or
G(1) = 1. But since each is a product of (1 — &) for various k,
neither can be a unit, so ®, must be irreducible. O

The following is obvious now.
Corollary 24.2.
[Q(&) : Q] = d(g) =p*'(p— D).

Now, we want to calculate the discriminant A(®,). We’'ll want the
following Lemma.

Lemma 24.3. Let F' and G be two monic polynomials over a field K.
Let

m

F(X) = H(X — )

and
n

G(X)=]J(x -8

Then

Proof. Since

we see that

(1) A(FG) = H(ai — ) [ [ (85— 80 H(Oﬁ —B)°.
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For any fixed ¢, we have

as desired. U
Theorem 24.4. Let ¢ = p® > 2. Then
A(D,) = +pp" ermaD)

with the minus-sign if and only if p =3 (mod 4).
Proof. We'll apply the previous Lemma to F(X) = (X7 — 1) and
G(X) = ¢,(X). Then F(X)G(X) = (X*" —1). We know then (from
homework) that

A(F(X)G(X)) = (=17 =02 )",

and o .
A(F(X)) = (-1 0Rpe

We also know that the roots a of F all satisfy o?" =1, so

H O, (o) =1+ T gt D)

F(a)=0
_ H p:ppa—1.

F(a)=0
So, we know then that
(_1)p“(p“—1)/2(pa)p”
(P2 D) (—1)p" o D2 a1y 1)

Now, we simply calculate the powers of (—1) and p that appear. The
power of p will be

ap® = 2p°t = (a = D)p* Tt =p*Hap -2 —a+1) =p* (ap—a—1),
as desired. The power of (—1) will be
PP = 1)/2-p" (0" = 1)/2,

which is odd when p = 3 (mod 4), even when p = 1 (mod 4), and even
when p =2 and a > 2. O

Theorem 24.5. The integral closure of Z in Q(&,) is Z[&,].

AP,y (X)) =
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Proof. Since A(Z[,]/Z) is a power of p, the only primes in Z[{,] that
could fail to be invertible are those lying over p. On the other hand, by
the Kummer theorem, the only prime lying over p in Z[¢,] is (p,§, — 1)
since ®,(X) divides (X7 —1) = (X —1)? (mod p). We know that

&G-0- J] €@ -1 =p
(s

and of course (£ — 1) is in Z[¢,] for any k, so
(p7§q - 1) - (éq - ]‘)
and is therefore principle and hence invertible. 0
We can use cyclotomic fields to prove the quadratic reciprocity the-

orem. Recall the definition the quadratic residue symbol for a prime
p. It is defined for an integer a coprime to p as

(g) _ { 1 : aissquare (mod p)

P —1 : aisnot asquare (mod p)

When p = 2, (%) =1 for any odd a. When p is odd and (a,p) = 1,
we have

(1) (1%) — a2,

@ ()= () )
(3) <—?1) — (—1)-D/2,

(4) (%) = 1 if and only if the order of a (mod p) divides (p — 1/2).

Properties 2, 3, and 4 follow immediately from 1. Property 1 follows
from the fact that (Z/pZ)* has a primitive root ¢ and a is square mod
p if and only if a = 6" for some even r. Now, (§")®~1V/2 = 1 if r is even
and —1 is r is odd, so we are done.

Continuing with quadratic reciprocity...

From now on, p and ¢ are distinct primes. Let’s also assume that ¢

is odd. Quadratic reciprocity relates (%) with (g). It says that for p

and ¢ odd we have
D q (=D (-1)
-)1{=)=(-1 i
(5) () -

What has this got to do with cyclotomic fields? The first fact is that
<§> = 1if and only if 2% — p factors mod q. When p =1 (mod 4), and
B = Z[,/q], this is the same thing as saying that

pB =019,
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(one prime for each factor). Why is this helpful? Because Q(&,) con-
tains a unique quadratic field.



