Theorem 24.1. The polynomial $\Phi_{q}(X)$ is irreducible and is therefore the minimal monic for ξ_{q}.
Proof. $\Phi_{q}(1)=1+1^{2}+\cdots+1^{p-1}=p$. Also

$$
\Phi_{q}(1)=\prod_{\substack{1 \leq k<q \\(k, q)=1}}\left(X-\xi_{q}^{k}\right)=\prod_{\substack{1 \leq k<q \\(k, q)=1}} u_{k}\left(1-\xi_{q}^{k}\right)=u\left(1-\xi_{q}\right)^{\phi(q)},
$$

where u_{k} and u are units and ϕ is the Euler ϕ-function. Similarly, for any k such that $(k, q)=1$. We have $v\left(1-\xi_{q}\right)^{\phi(q)}=p$ for a unit v. It follows that $\left(1-\xi_{q}^{k}\right)$ is not a unit for $(k, q)=1$. Now, if $\Phi_{q}(X)=$ $F(X) G(X)$ for polynomials F and G over \mathbb{Z}, either $F(1)= \pm 1$ or $G(1)= \pm 1$. But since each is a product of $\left(1-\xi_{q}^{k}\right)$ for various k, neither can be a unit, so Φ_{q} must be irreducible.

The following is obvious now.

Corollary 24.2 .

$$
\left[\mathbb{Q}\left(\xi_{q}\right): \mathbb{Q}\right]=\phi(q)=p^{a-1}(p-1)
$$

Now, we want to calculate the discriminant $\Delta\left(\Phi_{q}\right)$. We'll want the following Lemma.

Lemma 24.3. Let F and G be two monic polynomials over a field K. Let

$$
F(X)=\prod_{i=1}^{m}\left(X-\alpha_{i}\right)
$$

and

$$
G(X)=\prod_{j=1}^{n}\left(X-\beta_{j}\right)
$$

Then

$$
\Delta(F G)=\Delta(F) \cdot \Delta(G) \cdot \prod_{i=1}^{m} G\left(\alpha_{i}\right)^{2}
$$

Proof. Since

$$
F(X) G(X)=\prod_{i=1}^{m}\left(X-\alpha_{i}\right) \prod_{j=1}^{n}\left(X-\beta_{j}\right)
$$

we see that

$$
\begin{equation*}
\Delta(F G)=\prod_{i<k}\left(\alpha_{i}-\alpha_{k}\right)^{2} \prod_{j<\ell}\left(\beta_{j}-\beta_{\ell}\right)^{2} \prod_{i, j}\left(\alpha_{i}-\beta_{j}\right)^{2} . \tag{1}
\end{equation*}
$$

For any fixed i, we have

$$
\prod_{j=1}^{n}\left(\alpha_{i}-\beta_{j}\right)^{2}=G\left(\alpha_{i}\right)^{2}
$$

Thus (1) becomes

$$
\Delta(F G)=\Delta(F) \cdot \Delta(G) \cdot \prod_{i=1}^{m} G\left(\alpha_{i}\right)^{2},
$$

as desired.
Theorem 24.4. Let $q=p^{a}>2$. Then

$$
\Delta\left(\Phi_{q}\right)= \pm p^{p^{a-1}(a p-a-1)}
$$

with the minus-sign if and only if $p \equiv 3(\bmod 4)$.
Proof. We'll apply the previous Lemma to $F(X)=\left(X^{p^{a-1}}-1\right)$ and $G(X)=\Phi_{q}(X)$. Then $F(X) G(X)=\left(X^{p^{a}}-1\right)$. We know then (from homework) that

$$
\Delta(F(X) G(X))=(-1)^{p^{a}\left(p^{a}-1\right) / 2}\left(p^{a}\right)^{p^{a}} .
$$

and

$$
\Delta(F(X))=(-1)^{p^{a-1}\left(p^{a-1}-1\right) / 2}\left(p^{a-1}\right)^{p^{a-1}} .
$$

We also know that the roots α of F all satisfy $\alpha^{p^{a-1}}=1$, so

$$
\begin{aligned}
\prod_{F(\alpha)=0}^{\alpha} \Phi_{q}(\alpha) & =1+\alpha^{p^{a-1}}+\cdots+\alpha^{p^{a-1}(p-1)} \\
& =\prod_{F(\alpha)=0} p=p^{p^{a-1}} .
\end{aligned}
$$

So, we know then that

$$
\Delta\left(\Phi_{q}(X)\right)=\frac{(-1)^{p^{a}\left(p^{a}-1\right) / 2}\left(p^{a}\right)^{p^{a}}}{\left(p^{2\left(p^{a-1}\right)}\right)\left((-1)^{p^{a-1}\left(p^{a-1}-1\right) / 2}\left(p^{a-1}\right)^{p^{a-1}}\right)} .
$$

Now, we simply calculate the powers of (-1) and p that appear. The power of p will be

$$
a p^{a}-2 p^{a-1}-(a-1) p^{a-1}=p^{a-1}(a p-2-a+1)=p^{a-1}(a p-a-1),
$$

as desired. The power of (-1) will be

$$
p^{a}\left(p^{a}-1\right) / 2-p^{a-1}\left(p^{a-1}-1\right) / 2,
$$

which is odd when $p \equiv 3(\bmod 4)$, even when $p \equiv 1(\bmod 4)$, and even when $p=2$ and $a \geq 2$.

Theorem 24.5. The integral closure of \mathbb{Z} in $\mathbb{Q}\left(\xi_{q}\right)$ is $\mathbb{Z}\left[\xi_{q}\right]$.

Proof. Since $\Delta\left(\mathbb{Z}\left[\xi_{q}\right] / \mathbb{Z}\right)$ is a power of p, the only primes in $\mathbb{Z}\left[\xi_{q}\right]$ that could fail to be invertible are those lying over p. On the other hand, by the Kummer theorem, the only prime lying over p in $\mathbb{Z}\left[\xi_{q}\right]$ is $\left(p, \xi_{q}-1\right)$ since $\Phi_{q}(X)$ divides $\left(X^{q}-1\right) \equiv(X-1)^{q}(\bmod p)$. We know that

$$
\left(\xi_{q}-1\right) \cdot \prod_{\substack{1<k<q \\(k, q)=1}}\left(\xi_{q}^{k}-1\right)=p
$$

and of course $\left(\xi_{q}^{k}-1\right)$ is in $\mathbb{Z}\left[\xi_{q}\right]$ for any k, so

$$
\left(p, \xi_{q}-1\right)=\left(\xi_{q}-1\right)
$$

and is therefore principle and hence invertible.
We can use cyclotomic fields to prove the quadratic reciprocity theorem. Recall the definition the quadratic residue symbol for a prime p. It is defined for an integer a coprime to p as

$$
\left(\frac{a}{p}\right)=\left\{\begin{aligned}
& 1: \\
&-1: \quad a \text { is square } \quad(\bmod p) \\
&(\bmod p)
\end{aligned}\right.
$$

When $p=2,\left(\frac{a}{2}\right)=1$ for any odd a. When p is odd and $(a, p)=1$, we have
(1) $\left(\frac{a}{p}\right)=a^{(p-1) / 2}$;
(2) $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$;
(3) $\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}$;
(4) $\left(\frac{a}{p}\right)=1$ if and only if the order of $a(\bmod p)$ divides $(p-1 / 2)$.

Properties 2, 3, and 4 follow immediately from 1 . Property 1 follows from the fact that $(\mathbb{Z} / p \mathbb{Z})^{*}$ has a primitive root θ and a is square \bmod p if and only if $a=\theta^{r}$ for some even r. Now, $\left(\theta^{r}\right)^{(p-1) / 2}=1$ if r is even and -1 is r is odd, so we are done.

Continuing with quadratic reciprocity...
From now on, p and q are distinct primes. Let's also assume that q is odd. Quadratic reciprocity relates $\left(\frac{p}{q}\right)$ with $\left(\frac{q}{p}\right)$. It says that for p and q odd we have

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{(q-1)(p-1)}{4}} .
$$

What has this got to do with cyclotomic fields? The first fact is that $\left(\frac{p}{q}\right)=1$ if and only if $x^{2}-p$ factors $\bmod q$. When $p \equiv 1(\bmod 4)$, and $B=\mathbb{Z}[\sqrt{q}]$, this is the same thing as saying that

$$
p B=\mathcal{Q}_{1} \mathcal{Q}_{2}
$$

(one prime for each factor). Why is this helpful? Because $\mathbb{Q}\left(\xi_{q}\right)$ contains a unique quadratic field.

