
Math 531 Tom Tucker
NOTES FROM CLASS 10/25

Theorem 24.1. The polynomial Φq(X) is irreducible and is therefore
the minimal monic for ξq.

Proof. Φq(1) = 1 + 12 + · · ·+ 1p−1 = p. Also

Φq(1) =
∏

1≤k<q
(k,q)=1

(X − ξk
q ) =

∏
1≤k<q
(k,q)=1

uk(1− ξk
q ) = u(1− ξq)

φ(q),

where uk and u are units and φ is the Euler φ-function. Similarly, for
any k such that (k, q) = 1. We have v(1 − ξq)

φ(q) = p for a unit v.
It follows that (1 − ξk

q ) is not a unit for (k, q) = 1. Now, if Φq(X) =
F (X)G(X) for polynomials F and G over Z, either F (1) = ±1 or
G(1) = ±1. But since each is a product of (1 − ξk

q ) for various k,
neither can be a unit, so Φq must be irreducible. �

The following is obvious now.

Corollary 24.2.

[Q(ξq) : Q] = φ(q) = pa−1(p− 1).

Now, we want to calculate the discriminant ∆(Φq). We’ll want the
following Lemma.

Lemma 24.3. Let F and G be two monic polynomials over a field K.
Let

F (X) =
m∏

i=1

(X − αi)

and

G(X) =
n∏

j=1

(X − βj).

Then

∆(FG) = ∆(F ) ·∆(G) ·
m∏

i=1

G(αi)
2.

Proof. Since

F (X)G(X) =
m∏

i=1

(X − αi)
n∏

j=1

(X − βj),

we see that

(1) ∆(FG) =
∏
i<k

(αi − αk)
2
∏
j<`

(βj − β`)
2
∏
i,j

(αi − βj)
2.
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For any fixed i, we have
n∏

j=1

(αi − βj)
2 = G(αi)

2.

Thus (1) becomes

∆(FG) = ∆(F ) ·∆(G) ·
m∏

i=1

G(αi)
2,

as desired. �

Theorem 24.4. Let q = pa > 2. Then

∆(Φq) = ±ppa−1(ap−a−1)

with the minus-sign if and only if p ≡ 3 (mod 4).

Proof. We’ll apply the previous Lemma to F (X) = (Xpa−1 − 1) and
G(X) = Φq(X). Then F (X)G(X) = (Xpa − 1). We know then (from
homework) that

∆(F (X)G(X)) = (−1)pa(pa−1)/2(pa)pa

.

and
∆(F (X)) = (−1)pa−1(pa−1−1)/2(pa−1)pa−1

.

We also know that the roots α of F all satisfy αpa−1
= 1, so∏

α
F (α)=0

Φq(α) = 1 + αpa−1

+ · · ·+ αpa−1(p−1)

=
∏
α

F (α)=0

p = ppa−1

.

So, we know then that

∆(Φq(X)) =
(−1)pa(pa−1)/2(pa)pa

(p2(pa−1)) ((−1)pa−1(pa−1−1)/2(pa−1)pa−1)
.

Now, we simply calculate the powers of (−1) and p that appear. The
power of p will be

apa − 2pa−1 − (a− 1)pa−1 = pa−1(ap− 2− a + 1) = pa−1(ap− a− 1),

as desired. The power of (−1) will be

pa(pa − 1)/2− pa−1(pa−1 − 1)/2,

which is odd when p ≡ 3 (mod 4), even when p ≡ 1 (mod 4), and even
when p = 2 and a ≥ 2. �

Theorem 24.5. The integral closure of Z in Q(ξq) is Z[ξq].
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Proof. Since ∆(Z[ξq]/Z) is a power of p, the only primes in Z[ξq] that
could fail to be invertible are those lying over p. On the other hand, by
the Kummer theorem, the only prime lying over p in Z[ξq] is (p, ξq− 1)
since Φq(X) divides (Xq − 1) ≡ (X − 1)q (mod p). We know that

(ξq − 1) ·
∏

1<k<q
(k,q)=1

(ξk
q − 1) = p,

and of course (ξk
q − 1) is in Z[ξq] for any k, so

(p, ξq − 1) = (ξq − 1)

and is therefore principle and hence invertible. �

We can use cyclotomic fields to prove the quadratic reciprocity the-
orem. Recall the definition the quadratic residue symbol for a prime
p. It is defined for an integer a coprime to p as(

a

p

)
=

{
1 : a is square (mod p)

−1 : a is not a square (mod p)

When p = 2,
(

a
2

)
= 1 for any odd a. When p is odd and (a, p) = 1,

we have

(1)
(

a
p

)
= a(p−1)/2;

(2)
(

ab
p

)
=

(
a
p

) (
b
p

)
;

(3)
(
−1
p

)
= (−1)(p−1)/2;

(4)
(

a
p

)
= 1 if and only if the order of a (mod p) divides (p− 1/2).

Properties 2, 3, and 4 follow immediately from 1. Property 1 follows
from the fact that (Z/pZ)∗ has a primitive root θ and a is square mod
p if and only if a = θr for some even r. Now, (θr)(p−1)/2 = 1 if r is even
and −1 is r is odd, so we are done.

Continuing with quadratic reciprocity...
From now on, p and q are distinct primes. Let’s also assume that q

is odd. Quadratic reciprocity relates
(

p
q

)
with

(
q
p

)
. It says that for p

and q odd we have (
p

q

) (
q

p

)
= (−1)

(q−1)(p−1)
4 .

What has this got to do with cyclotomic fields? The first fact is that(
p
q

)
= 1 if and only if x2−p factors mod q. When p ≡ 1 (mod 4), and

B = Z[
√

q], this is the same thing as saying that

pB = Q1Q2
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(one prime for each factor). Why is this helpful? Because Q(ξq) con-
tains a unique quadratic field.


