Math 531 Tom Tucker

NOTES FROM CLASS 10/22
Now, we want to figure out what the norm of a prime ideal in B is. We begin with a simple observation.
Lemma 23.1. Let $\mathcal{Q} \cap A=\mathcal{P}$ for \mathcal{Q} a maximal ideal of B. Then $\mathrm{N}(\mathcal{Q})$ is a power of \mathcal{P}.
Proof. First of all, we know that $\mathrm{N}(\mathcal{Q})$ cannot be all of A since writing $\mathrm{N}(y)$ is a power of $y_{1} \cdots y_{m}$ where the y_{i} are the conjugates of y, one of which is y itself. Thus $\mathrm{N}(y) \subseteq \mathcal{Q}$, so $\mathrm{N}(y) \subseteq \mathcal{Q} \cap A=\mathcal{P}$. Since $\mathcal{P} \subseteq \mathcal{Q}$ and $\mathrm{N}(a)=a^{n}(n=[L: k]$, as usual $), \mathrm{N}(\mathcal{Q})$ contains a^{n} for every $a \in \mathcal{P}$. Since for every maximal $\mathcal{P}^{\prime} \neq \mathcal{P}$ in A, there exists $x \in \mathcal{P}^{\prime}$ such that $a+x=1$ for some $a \in \mathcal{P}$, the element $w=(a+x)^{n}-x^{n}$ is in \mathcal{P}^{\prime} and $w+a^{n}=1$. Therefore $\mathrm{N}(\mathcal{Q})$ cannot have \mathcal{P}^{\prime} in its factorization and must be a power of \mathcal{P}, as desired.
Lemma 23.2. Suppose that L is Galois over K. Let \mathcal{Q} be maximal in B with $\mathcal{Q} \cap A=\mathcal{P}$ and let $f=[B / \mathcal{Q}: A / \mathcal{P}]$. Then $\mathrm{N}(\mathcal{Q})=\mathcal{P}^{f}$.
Proof. Since we know that $\mathrm{N}(\mathcal{Q})$ is a power of \mathcal{P}, it suffices to show that $A_{\mathcal{P}} \mathrm{N}(\mathcal{Q})=\mathcal{P}^{f}$, which is equivalent to showing that $\mathrm{N}\left(S^{-1} B \mathcal{Q}\right)=\mathcal{P}^{f}$, where $S=A \backslash \mathcal{P}$. We write

$$
\mathrm{N}(\mathcal{Q})=\mathcal{P}^{\ell} .
$$

It suffices to show this for $A=A_{\mathcal{P}}$ and $B=S^{-1} B$. In this case, B is a principal ideal domain and we may write $\mathcal{Q}=B \pi$. Now, letting $G=\operatorname{Gal}(L / K)$, we see that

$$
B \mathrm{~N}(\mathcal{Q})=B \mathrm{~N}(B \pi)=\prod_{\sigma \in G} B \sigma(\pi)=\prod_{\sigma \in G} \sigma(\mathcal{Q})
$$

Letting $\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{m}$ be the distinct conjugates of \mathcal{Q}, i.e. all the primes of B lying over \mathcal{P}, we see that

$$
\mathrm{N}(\mathcal{Q})=\mathcal{Q}_{1}^{t_{1}} \cdots \mathcal{Q}_{m}^{t_{m}}
$$

where the $\sum_{i=1}^{m} t_{i}=n$. We also know that $\operatorname{since} \mathrm{N}(\mathcal{Q})$ is a power of \mathcal{P}, and

$$
\mathcal{P} B=\mathcal{Q}_{1}^{e} \cdots \mathcal{Q}_{m}^{e}
$$

for some positive integer e, all of the t_{i} must equal $e \ell$ for ℓ. Thus, we have $m(e \ell)=n$. On the other hand, we know that the relative degrees $\left[B / \mathcal{Q}_{i}: A / \mathcal{P}\right]$ are all equal to some fixed f, so we have

$$
n=\sum_{i=1}^{m} e f=m e f .
$$

This gives mef $=m e \ell$, so $\ell=f$, as desired.
Theorem 23.3. Let L be any finite separable extension of K and let A and B be a usual. Let \mathcal{Q} be maximal in B with $\mathcal{Q} \cap A=\mathcal{P}$ and let $f=\left[B / \mathcal{Q}_{i}: A / \mathcal{P}\right]=f$. Then $\mathrm{N}(\mathcal{Q})=\mathcal{P}^{f}$.
Proof. Let M be the Galois closure of L over K. Let R be the integral closure of B in M, which is also the integral closure of A in M. Let \mathcal{M} be a maximal ideal of R with $\mathcal{M} \cap B=\mathcal{Q}$. From the previous Lemma, we know that $\mathrm{N}_{M / L}(\mathcal{M})=\mathcal{Q}^{[R / \mathcal{M}: B / \mathcal{Q}]}$. By the previous Lemma and transitivity of the norm, we know that

$$
\mathrm{N}_{L / K}\left(\mathcal{Q}^{[R / \mathcal{M}: B / \mathcal{Q}]}\right)=\mathrm{N}_{L / K}\left(\mathrm{~N}_{M / L}(\mathcal{M})\right)=\mathrm{N}_{M / K}(\mathcal{M})=\mathcal{P}^{[R / \mathcal{M}: A / \mathcal{P}]}
$$

Thus

$$
\mathrm{N}_{L / K}(\mathcal{Q})=\mathcal{P}^{\frac{[R / \mathcal{M}: A / \mathcal{P}]}{[R / \mathcal{M}: B / \mathcal{Q}]}}=\mathcal{P}^{f}
$$

where $f=[B / \mathcal{Q}: A / \mathcal{P}]$.
An easy application. Which positive numbers m can be written as $a^{2}+b^{2}$ for integers a and b ?

Theorem 23.4. A positive integer m can be written as $a^{2}+b^{2}$ for integers a and b if and only if every prime $p \mid m$ such that $p \equiv 3$ $(\bmod 4)$ appears to an even power in the factorization of m.
Proof. Let $B=\mathbb{Z}[i]$. Then $\mathrm{N}(a+b i)=a^{2}+b^{2}$, for $a, b \in \mathbb{Z}$. Since B is a principal ideal domain, a positive integer $m=\mathrm{N}(a+b i)$ for some $a+b i \in B$ if and only if $(m)=\mathrm{N}(I)$ for some ideal I of \mathbb{Z}. Recall that from Problem $6 \# 4$, we know that Show that $\mathbb{Z}[i] p$ factors as

$$
\begin{array}{rll}
\mathcal{Q}^{2} & ; & \text { if } p=2 \\
\mathcal{Q}_{1} \mathcal{Q}_{2} & ; & \text { if } p \equiv 1 \quad(\bmod 4) \\
\mathcal{Q} & ; & \text { if } p \equiv 3 \\
(\bmod 4)
\end{array}
$$

where $\mathcal{Q}, \mathcal{Q}_{1}, \mathcal{Q}_{2}$ are primes of $\mathbb{Z}[i]$ and $\mathcal{Q}_{1} \neq \mathcal{Q}_{2}$. It follows that there is an ideal \mathcal{Q}_{p} of B such that $\mathrm{N}(\mathcal{Q})=\mathbb{Z} p$ if and only if p is not congruent to $3 \bmod 4$. If $p \equiv 3(\bmod 4)$, then $p B$ is the only prime lying over p and $\mathrm{N}(p B)=(\mathbb{Z} p)^{2}$. Factoring m as

$$
m=\prod_{p \neq 3} p_{\substack{(\bmod 4) \\ p \mid m}} p_{p \equiv 3}^{s_{i}} \prod_{\substack{(\bmod 4) \\ p \mid m}} p^{t_{i}}
$$

Letting \mathcal{Q}_{p} be as above, we see that the ideal

$$
I=\prod_{\substack{p \neq 3 \\(\bmod 4) \\ p \mid m}} \mathcal{Q}_{p}^{s_{p}} \prod_{\substack{p \equiv 3 \\ p \mid m}}(\mathcal{P} B)^{\frac{t_{p}}{2}} .
$$

Has the property that $\mathrm{N}(I)=\mathbb{Z} m$. On the other hand if I is any ideal of B then $\mathbb{Z}_{(p)} \mathrm{N}(I)=\left(\mathrm{N}\left(B_{p B} I\right)\right)^{2}$, for any $p \equiv 1(\bmod 4)$, so if $\mathbb{Z} m=\mathrm{N}(I)$, then t_{p} is even. So we are done.

Now, let's begin working with cyclotomic fields. Let $q=p^{a}>2$. Let

$$
\Phi_{q}(X)=X^{p^{a-1}(p-1)}+X^{p^{a-1}(p-2)}+\cdots+X^{p^{a-1}}+1
$$

Then

$$
\Phi_{q}(X)=\frac{X^{q}-1}{X^{p^{a-1}}-1}
$$

Let ξ_{q} be a primitive q-th root of unity. Then

$$
\Phi_{q}(X)=\prod_{\substack{1<k<q \\(k, q)=1}}\left(X-\xi_{q}^{k}\right)
$$

Let $q=p^{a}>2$. Let

$$
\Phi_{q}(X)=X^{p^{a-1}(p-1)}+X^{p^{a-1}(p-2)}+\cdots+X^{p^{a-1}}+1
$$

Then

$$
\Phi_{q}(X)=\frac{X^{q}-1}{X^{p^{a-1}}-1}
$$

Let ξ_{q} be a primitive q-th root of unity. Then

$$
\Phi_{q}(X)=\prod_{\substack{1 \leq k<q \\(k, q)=1}}\left(X-\xi_{q}^{k}\right)
$$

Lemma 23.5. For any positive integer k with $(k, q)=1$, the element

$$
\frac{1-\xi_{q}^{k}}{1-\xi_{q}}
$$

is a unit in B.
Proof. Since $\left(1-\xi_{q}^{k}\right) /\left(1-\xi_{q}\right)=1+\xi_{q}+\cdots+\xi_{q}^{k-1}$, we see that $(1-$ $\left.\xi_{q}^{k}\right) /\left(1-\xi_{q}\right)$ is in B. Also, there exists a positive integer ℓ such that $k \ell \equiv 1(\bmod q)$, so $\xi_{q}=\left(\xi_{q}^{k}\right)^{\ell}$. Hence the inverse of $\left(1-\xi_{q}^{k}\right)\left(1-\xi_{q}\right)$ which is

$$
\frac{1-\xi_{q}}{1-\xi_{q}^{k}}=\frac{1-\left(\xi_{q}^{k}\right)^{\ell}}{1-\xi_{q}^{k}}=1+\left(\xi_{q}^{k}\right)+\cdots+\left(\xi_{q}^{k}\right)^{\ell-1}
$$

is in B. So $\left(1-\xi_{q}^{k}\right) /\left(1-\xi_{q}\right)$ is a unit

