Math 531 Tom Tucker NOTES FROM CLASS 10/22

Now, we want to figure out what the norm of a prime ideal in B is. We begin with a simple observation.

Lemma 23.1. Let $\mathcal{Q} \cap A = \mathcal{P}$ for \mathcal{Q} a maximal ideal of B. Then $N(\mathcal{Q})$ is a power of \mathcal{P} .

Proof. First of all, we know that $N(\mathcal{Q})$ cannot be all of A since writing N(y) is a power of $y_1 \cdots y_m$ where the y_i are the conjugates of y, one of which is y itself. Thus $N(y) \subseteq \mathcal{Q}$, so $N(y) \subseteq \mathcal{Q} \cap A = \mathcal{P}$. Since $\mathcal{P} \subseteq \mathcal{Q}$ and $N(a) = a^n$ $(n = [L : k], \text{ as usual}), N(\mathcal{Q})$ contains a^n for every $a \in \mathcal{P}$. Since for every maximal $\mathcal{P}' \neq \mathcal{P}$ in A, there exists $x \in \mathcal{P}'$ such that a + x = 1 for some $a \in \mathcal{P}$, the element $w = (a + x)^n - x^n$ is in \mathcal{P}' and $w + a^n = 1$. Therefore $N(\mathcal{Q})$ cannot have \mathcal{P}' in its factorization and must be a power of \mathcal{P} , as desired. \Box

Lemma 23.2. Suppose that L is Galois over K. Let \mathcal{Q} be maximal in B with $\mathcal{Q} \cap A = \mathcal{P}$ and let $f = [B/\mathcal{Q} : A/\mathcal{P}]$. Then $N(\mathcal{Q}) = \mathcal{P}^f$.

Proof. Since we know that $N(\mathcal{Q})$ is a power of \mathcal{P} , it suffices to show that $A_{\mathcal{P}} N(\mathcal{Q}) = \mathcal{P}^f$, which is equivalent to showing that $N(S^{-1}B\mathcal{Q}) = \mathcal{P}^f$, where $S = A \setminus \mathcal{P}$. We write

$$N(\mathcal{Q}) = \mathcal{P}^{\ell}.$$

It suffices to show this for $A = A_{\mathcal{P}}$ and $B = S^{-1}B$. In this case, B is a principal ideal domain and we may write $\mathcal{Q} = B\pi$. Now, letting $G = \operatorname{Gal}(L/K)$, we see that

$$B \operatorname{N}(\mathcal{Q}) = B \operatorname{N}(B\pi) = \prod_{\sigma \in G} B\sigma(\pi) = \prod_{\sigma \in G} \sigma(\mathcal{Q})$$

Letting $\mathcal{Q}_1, \ldots, \mathcal{Q}_m$ be the distinct conjugates of \mathcal{Q} , i.e. all the primes of B lying over \mathcal{P} , we see that

$$\mathcal{N}(\mathcal{Q}) = \mathcal{Q}_1^{t_1} \cdots \mathcal{Q}_m^{t_m}$$

where the $\sum_{i=1}^{m} t_i = n$. We also know that since N(Q) is a power of \mathcal{P} , and

$$\mathcal{P}B = \mathcal{Q}_1^e \cdots \mathcal{Q}_m^e$$

for some positive integer e, all of the t_i must equal $e\ell$ for ℓ . Thus, we have $m(e\ell) = n$. On the other hand, we know that the relative degrees $[B/Q_i : A/\mathcal{P}]$ are all equal to some fixed f, so we have

$$n = \sum_{i=1}^{m} ef = mef.$$

This gives $mef = me\ell$, so $\ell = f$, as desired.

Theorem 23.3. Let *L* be any finite separable extension of *K* and let *A* and *B* be a usual. Let \mathcal{Q} be maximal in *B* with $\mathcal{Q} \cap A = \mathcal{P}$ and let $f = [B/\mathcal{Q}_i : A/\mathcal{P}] = f$. Then $N(\mathcal{Q}) = \mathcal{P}^f$.

Proof. Let M be the Galois closure of L over K. Let R be the integral closure of B in M, which is also the integral closure of A in M. Let \mathcal{M} be a maximal ideal of R with $\mathcal{M} \cap B = \mathcal{Q}$. From the previous Lemma, we know that $N_{M/L}(\mathcal{M}) = \mathcal{Q}^{[R/\mathcal{M}:B/\mathcal{Q}]}$. By the previous Lemma and transitivity of the norm, we know that

$$N_{L/K}(\mathcal{Q}^{[R/\mathcal{M}:B/\mathcal{Q}]}) = N_{L/K}(N_{M/L}(\mathcal{M})) = N_{M/K}(\mathcal{M}) = \mathcal{P}^{[R/\mathcal{M}:A/\mathcal{P}]}.$$

Thus

$$N_{L/K}(\mathcal{Q}) = \mathcal{P}^{\frac{[R/\mathcal{M}:A/\mathcal{P}]}{[R/\mathcal{M}:B/\mathcal{Q}]}} = \mathcal{P}^{f}$$

where f = [B/Q : A/P].

An easy application. Which positive numbers m can be written as $a^2 + b^2$ for integers a and b?

Theorem 23.4. A positive integer m can be written as $a^2 + b^2$ for integers a and b if and only if every prime $p \mid m$ such that $p \equiv 3 \pmod{4}$ appears to an even power in the factorization of m.

Proof. Let $B = \mathbb{Z}[i]$. Then $N(a + bi) = a^2 + b^2$, for $a, b \in \mathbb{Z}$. Since B is a principal ideal domain, a positive integer m = N(a + bi) for some $a + bi \in B$ if and only if (m) = N(I) for some ideal I of \mathbb{Z} . Recall that from Problem 6 #4, we know that Show that $\mathbb{Z}[i]p$ factors as

$$\begin{array}{ll}
\mathcal{Q}^2 & ; & \text{if } p \equiv 2 \\
\mathcal{Q}_1 \mathcal{Q}_2 & ; & \text{if } p \equiv 1 \pmod{4} \\
\mathcal{Q} & ; & \text{if } p \equiv 3 \pmod{4},
\end{array}$$

where $\mathcal{Q}, \mathcal{Q}_1, \mathcal{Q}_2$ are primes of $\mathbb{Z}[i]$ and $\mathcal{Q}_1 \neq \mathcal{Q}_2$. It follows that there is an ideal \mathcal{Q}_p of B such that $N(\mathcal{Q}) = \mathbb{Z}p$ if and only if p is not congruent to 3 mod 4. If $p \equiv 3 \pmod{4}$, then pB is the only prime lying over pand $N(pB) = (\mathbb{Z}p)^2$. Factoring m as

$$m = \prod_{\substack{p \not\equiv 3 \pmod{4}}} p^{s_i} \prod_{\substack{p \equiv 3 \pmod{4}}} p^{t_i} p^{t_i}$$

Letting \mathcal{Q}_p be as above, we see that the ideal

$$I = \prod_{\substack{p \not\equiv 3 \pmod{4}}} \prod_{\substack{(\text{mod } 4) \\ p \mid m}} \mathcal{Q}_p^{s_p} \prod_{\substack{p \equiv 3 \pmod{4}}} (\mathcal{P}B)^{\frac{t_p}{2}}.$$

Has the property that $N(I) = \mathbb{Z}m$. On the other hand if I is any ideal of B then $\mathbb{Z}_{(p)} N(I) = (N(B_{pB}I))^2$, for any $p \equiv 1 \pmod{4}$, so if $\mathbb{Z}m = N(I)$, then t_p is even. So we are done.

Now, let's begin working with cyclotomic fields. Let $q = p^a > 2$. Let

$$\Phi_q(X) = X^{p^{a-1}(p-1)} + X^{p^{a-1}(p-2)} + \dots + X^{p^{a-1}} + 1.$$

Then

$$\Phi_q(X) = \frac{X^q - 1}{X^{p^{a-1}} - 1}.$$

Let ξ_q be a primitive q-th root of unity. Then

$$\Phi_q(X) = \prod_{\substack{1 < k < q \\ (k,q) = 1}} (X - \xi_q^k)$$

Let $q = p^a > 2$. Let

$$\Phi_q(X) = X^{p^{a-1}(p-1)} + X^{p^{a-1}(p-2)} + \dots + X^{p^{a-1}} + 1.$$

Then

$$\Phi_q(X) = \frac{X^q - 1}{X^{p^{a-1}} - 1}$$

Let ξ_q be a primitive q-th root of unity. Then

$$\Phi_q(X) = \prod_{\substack{1 \le k < q \\ (k,q) = 1}} (X - \xi_q^k)$$

Lemma 23.5. For any positive integer k with (k,q) = 1, the element

$$\frac{1-\xi_q^k}{1-\xi_q}$$

is a unit in B.

Proof. Since $(1 - \xi_q^k)/(1 - \xi_q) = 1 + \xi_q + \dots + \xi_q^{k-1}$, we see that $(1 - \xi_q^k)/(1 - \xi_q)$ is in *B*. Also, there exists a positive integer ℓ such that $k\ell \equiv 1 \pmod{q}$, so $\xi_q = (\xi_q^k)^{\ell}$. Hence the inverse of $(1 - \xi_q^k)(1 - \xi_q)$ which is

$$\frac{1-\xi_q}{1-\xi_q^k} = \frac{1-(\xi_q^k)^\ell}{1-\xi_q^k} = 1+(\xi_q^k)+\dots+(\xi_q^k)^{\ell-1}$$

is in *B*. So $(1 - \xi_q^k)/(1 - \xi_q)$ is a unit