Math 531 Tom Tucker

NOTES FROM CLASS 10/20
We will want to work with norms of ideals in a bit. There is one more thing to prove about norms first. First a Lemma.
(stuff from p. 24)
Lemma 22.1. Let L be a separable (not necessarily Galois) field extension of K of degree n, let M be the Galois closure of L over K, and let $G=\operatorname{Gal}(M / L)$. Let H_{L} be the subgroup of G that acts trivially on L and let $H \backslash G$ be a complete set of left coset representatives for G over H. Then, for any $y \in L$, we have

$$
T_{L / K}(y)=\sum_{\sigma \in H \backslash G} \sigma(y)
$$

and

$$
\mathrm{N}_{L / K}(y)=\prod_{\sigma \in H \backslash G} \sigma(y)
$$

Proof. Let y_{1}, \ldots, y_{m}. Then we know that

$$
\mathrm{T}_{L / K}(y)=[L: K(y)]\left(\sum_{i=1}^{m} y_{i}\right)
$$

and

$$
\mathrm{N}_{L / K}(y)=\left(\prod_{i=1}^{m} y_{i}\right)^{[L: K(y)]}
$$

Now, let H_{y} be the subgroup of G that acts identially on $K(y)$. Then

$$
\begin{aligned}
\mathrm{T}_{L / K}(y) & =\sum_{\sigma \in H \backslash G} \sigma(y)=[L: K(y)] \sum_{\sigma \in H_{y} \backslash H} \sigma(y) \\
& =\mathrm{T}_{L / K}(y)=[L: K(y)]\left(\sum_{i=1}^{m} y_{i}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{N}_{L / K}(y) & =\prod_{\sigma \in H \backslash G} \sigma(y)=\prod_{\sigma \in H_{y} \backslash H} \sigma(y)^{[L: K(y)]} \\
& =\mathrm{N}_{L / K}(y)=\left(\prod_{i=1}^{m} y_{i}\right)^{[L: K(y)]}
\end{aligned}
$$

as desired.

Proposition 22.2. Let $K \subseteq E \subseteq L$ be finite seprable extension of K. Then, for any $y \in L$, we have

$$
\mathrm{N}_{L / K}(y)=\mathrm{N}_{E / K}\left(\mathrm{~N}_{L / E}(y)\right) .
$$

Proof. Let M be a Galois extension of K that contains L and let $G=$ $\operatorname{Gal}(M / K)$. Let H_{E} and H_{L} be the subgroups of G that act identically on E and L respectively. Note that H_{E} is the Galois group for M over E. Let $\tau_{1}, \ldots, \tau_{s}$ represent the cosets $H_{E} \backslash G$ and $\gamma_{1}, \ldots, \gamma_{t}$ represent the cosets $H_{L} \backslash H_{E}$, then the $\tau_{i} \gamma_{j}$ represent the cosets $H_{L} \backslash G$. Therefore,

$$
\mathrm{N}_{L / K}(y)=\prod_{i, j}\left(\tau_{i} \gamma_{j}\right)(y)=\prod_{i=1}^{s} \tau_{i}\left(\prod_{j=1}^{t} \gamma_{j}(y)\right)=\mathrm{N}_{E / K}\left(\mathrm{~N}_{L / E}(y)\right) .
$$

One more thing to prove before getting to norms of ideals.
Proposition 22.3. Let B be a Dedekind domain with finitely many maximal ideals \mathcal{P}. Then B is a principal ideal domain.

Proof. It will suffice to show that every maximal ideal \mathcal{P} of B is principal. Let \mathcal{P} be a maximal ideal of B and let $\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{m}$ be the other maximal ideals of B and let

$$
I=\mathcal{Q}_{1} \cdots \mathcal{Q}_{m} .
$$

Then $\mathcal{P}^{2}+I=1$, so we can write $x+y=1$ with $x \in \mathcal{P}^{2}$ and $y \in I$. Since $\mathcal{P} \neq \mathcal{P}^{2}$ (by unique factorization), there is some $a \in \mathcal{P} \backslash \mathcal{P}^{2}$. Let $\pi=a y+x$. Since

$$
y=1-x \equiv 1 \quad\left(\bmod \mathcal{P}^{2}\right),
$$

we see that

$$
a y+x \equiv a y \quad\left(\bmod \mathcal{P}^{2}\right) \not \equiv 0 \quad\left(\bmod \mathcal{P}^{2}\right)
$$

so $a y \in \mathcal{P} \backslash \mathcal{P}^{2}$. Also

$$
a y+x \equiv x \quad(\bmod I) \equiv 1-y \quad(\bmod I) \equiv 1 \quad(\bmod I),
$$

so $a y+x \notin \mathcal{Q}_{i}$ for any i. Therefore $B \pi$ must be \mathcal{P}.
Norms of ideals. Back on our usual set-up A Dedekind with field of fractions K, L a finite seprable extension of K of degree n, B the integral closure of A in L. We'll also want A / \mathcal{P} to be perfect for every maximal ideal \mathcal{P}. We have already defined the norm $\mathrm{N}_{L / K}: L \longrightarrow K$; it sends B to A (since all the coefficients of the minimal polynomial of an integral element are integral). When it is clear what field we are working over we will omit the L / K subscript.

Definition 22.4. For any ideal $I \subset B$, we define the ideal $\mathrm{N}(I)$ to be the A-ideal generated by all $\mathrm{N}(x)$ for $x \in I$.

Properties of the norm (8.1 on p. 42)
Proposition 22.5. The norm map has the following properties
(1) $\mathrm{N}(B y)=A \mathrm{~N}(y)$ for any $y \in B$.
(2) If $S \subset A$ is a multiplicative subset not containing 0, and I is an ideal of B, then $\mathrm{N}\left(S^{-1} B I\right)=S^{-1} A \mathrm{~N}(I)$.
(3) $\mathrm{N}(I J)=\mathrm{N}(I) \mathrm{N}(J)$, for any ideals I and J of B.

Proof. 1. We know the norm map is multiplicative since the determinant of matrices is. Since $\mathrm{N}(B) \subset A$, it follows that $\mathrm{N}(B y) \subset A \mathrm{~N}(y)$. Also, $\mathrm{N}(y) \subset \mathrm{N}(B y)$, so $A \mathrm{~N}(y) \subset \mathrm{N}(B y)$, so $\mathrm{N}(B y)=A \mathrm{~N}(y)$.
2. For any $y \in S^{-1} B I$, we can write $y=x / s$ for $x \in I$ and $s \in$ S. Then $\mathrm{N}(y)=\mathrm{N}(x / s)=\mathrm{N}(x) / s^{n} \in S^{-1} A \mathrm{~N}(I)$, so $\mathrm{N}\left(S^{-1} B I\right) \subseteq$ $S^{-1} A \mathrm{~N}(I)$. On the other hand, $S^{-1} A \mathrm{~N}(I)$ is generated as an $S^{-1} A-$ module by $\mathrm{N}(I)$ and $\mathrm{N}(I) \subseteq \mathrm{N}\left(S^{-1} B I\right)$, so we have $S^{-1} A \mathrm{~N}(I) \subseteq$ $\mathrm{N}\left(S^{-1} B I\right)$.
3. This is surprisingly difficult, since we the norm is not additive. On the other hand, since any ideal of A is determine by its localizations at all the maximal \mathcal{P} of A, it will suffice to show that $A_{\mathcal{P}} \mathrm{N}(I) A_{\mathcal{P}} \mathrm{N}(J)=$ $A_{\mathcal{P}} \mathrm{N}(I J)$. From 2, this means we only have to show that

$$
\mathrm{N}\left(S^{-1} B I\right) \mathrm{N}\left(S^{-1} B J\right)=\mathrm{N}\left(S^{-1} B I J\right)
$$

Since there are finitely many primes $\mathcal{Q} \in B$ such that $\mathcal{Q} \cap A=\mathcal{P}$, the ring $S^{-1} B$ has finitely many primes, hence is a principal ideal domain. So we write $S^{-1} B x=S^{-1} B I$ and $S^{-1} B y=S^{-1} B J$. Then we have

$$
\begin{aligned}
\mathrm{N}\left(S^{-1} B I\right) \mathrm{N}\left(S^{-1} B J\right) & =\mathrm{N}\left(S^{-1} B x\right) \mathrm{N}\left(S^{-1} B y\right) \\
& =\mathrm{N}\left(S^{-1} B x y\right)=\mathrm{N}\left(S^{-1} B I J\right),
\end{aligned}
$$

and we are done.

