Math 531 Tom Tucker NOTES FROM CLASS 10/20

We will want to work with norms of ideals in a bit. There is one more thing to prove about norms first. First a Lemma. (stuff from p. 24)

Lemma 22.1. Let L be a separable (not necessarily Galois) field extension of K of degree n, let M be the Galois closure of L over K, and let $G = \operatorname{Gal}(M/L)$. Let H_L be the subgroup of G that acts trivially on L and let $H \setminus G$ be a complete set of left coset representatives for G over H. Then, for any $y \in L$, we have

$$T_{L/K}(y) = \sum_{\sigma \in H \setminus G} \sigma(y)$$

and

$$N_{L/K}(y) = \prod_{\sigma \in H \setminus G} \sigma(y)$$

Proof. Let y_1, \ldots, y_m . Then we know that

$$T_{L/K}(y) = [L:K(y)] \left(\sum_{i=1}^{m} y_i\right)$$

and

$$N_{L/K}(y) = \left(\prod_{i=1}^{m} y_i\right)^{[L:K(y)]}.$$

Now, let H_y be the subgroup of G that acts identially on K(y). Then

$$T_{L/K}(y) = \sum_{\sigma \in H \setminus G} \sigma(y) = [L : K(y)] \sum_{\sigma \in H_y \setminus H} \sigma(y)$$
$$= T_{L/K}(y) = [L : K(y)] \left(\sum_{i=1}^m y_i\right),$$

and

$$N_{L/K}(y) = \prod_{\sigma \in H \setminus G} \sigma(y) = \prod_{\sigma \in H_y \setminus H} \sigma(y)^{[L:K(y)]}$$
$$= N_{L/K}(y) = \left(\prod_{i=1}^m y_i\right)^{[L:K(y)]},$$

as desired.

1

Proposition 22.2. Let $K \subseteq E \subseteq L$ be finite seprable extension of K. Then, for any $y \in L$, we have

$$N_{L/K}(y) = N_{E/K}(N_{L/E}(y)).$$

Proof. Let M be a Galois extension of K that contains L and let $G = \operatorname{Gal}(M/K)$. Let H_E and H_L be the subgroups of G that act identically on E and L respectively. Note that H_E is the Galois group for M over E. Let τ_1, \ldots, τ_s represent the cosets $H_E \setminus G$ and $\gamma_1, \ldots, \gamma_t$ represent the cosets $H_L \setminus G$. Therefore,

$$N_{L/K}(y) = \prod_{i,j} (\tau_i \gamma_j)(y) = \prod_{i=1}^s \tau_i (\prod_{j=1}^t \gamma_j(y)) = N_{E/K}(N_{L/E}(y)).$$

One more thing to prove before getting to norms of ideals.

Proposition 22.3. Let B be a Dedekind domain with finitely many maximal ideals \mathcal{P} . Then B is a principal ideal domain.

Proof. It will suffice to show that every maximal ideal \mathcal{P} of B is principal. Let \mathcal{P} be a maximal ideal of B and let $\mathcal{Q}_1, \ldots, \mathcal{Q}_m$ be the other maximal ideals of B and let

$$I = \mathcal{Q}_1 \cdots \mathcal{Q}_m$$
.

Then $\mathcal{P}^2 + I = 1$, so we can write x + y = 1 with $x \in \mathcal{P}^2$ and $y \in I$. Since $\mathcal{P} \neq \mathcal{P}^2$ (by unique factorization), there is some $a \in \mathcal{P} \setminus \mathcal{P}^2$. Let $\pi = ay + x$. Since

$$y = 1 - x \equiv 1 \pmod{\mathcal{P}^2},$$

we see that

$$ay + x \equiv ay \pmod{\mathcal{P}^2} \not\equiv 0 \pmod{\mathcal{P}^2},$$

so $ay \in \mathcal{P} \setminus \mathcal{P}^2$. Also

$$ay + x \equiv x \pmod{I} \equiv 1 - y \pmod{I} \equiv 1 \pmod{I},$$

so
$$ay + x \notin Q_i$$
 for any i. Therefore $B\pi$ must be \mathcal{P} .

Norms of ideals. Back on our usual set-up A Dedekind with field of fractions K, L a finite seprable extension of K of degree n, B the integral closure of A in L. We'll also want A/\mathcal{P} to be perfect for every maximal ideal \mathcal{P} . We have already defined the norm $N_{L/K}: L \longrightarrow K$; it sends B to A (since all the coefficients of the minimal polynomial of an integral element are integral). When it is clear what field we are working over we will omit the L/K subscript.

Definition 22.4. For any ideal $I \subset B$, we define the ideal N(I) to be the A-ideal generated by all N(x) for $x \in I$.

Properties of the norm (8.1 on p. 42)

Proposition 22.5. The norm map has the following properties

- (1) N(By) = A N(y) for any $y \in B$.
- (2) If $S \subset A$ is a multiplicative subset not containing 0, and I is an ideal of B, then $N(S^{-1}BI) = S^{-1}AN(I)$.
- (3) N(IJ) = N(I) N(J), for any ideals I and J of B.
- *Proof.* 1. We know the norm map is multiplicative since the determinant of matrices is. Since $N(B) \subset A$, it follows that $N(By) \subset A N(y)$. Also, $N(y) \subset N(By)$, so $A N(y) \subset N(By)$, so N(By) = A N(y).
- 2. For any $y \in S^{-1}BI$, we can write y = x/s for $x \in I$ and $s \in S$. Then $N(y) = N(x/s) = N(x)/s^n \in S^{-1}AN(I)$, so $N(S^{-1}BI) \subseteq S^{-1}AN(I)$. On the other hand, $S^{-1}AN(I)$ is generated as an $S^{-1}A$ -module by N(I) and $N(I) \subseteq N(S^{-1}BI)$, so we have $S^{-1}AN(I) \subseteq N(S^{-1}BI)$.
- 3. This is surprisingly difficult, since we the norm is not additive. On the other hand, since any ideal of A is determine by its localizations at all the maximal \mathcal{P} of A, it will suffice to show that $A_{\mathcal{P}} N(I) A_{\mathcal{P}} N(J) = A_{\mathcal{P}} N(IJ)$. From 2, this means we only have to show that

$$N(S^{-1}BI) N(S^{-1}BJ) = N(S^{-1}BIJ).$$

Since there are finitely many primes $Q \in B$ such that $Q \cap A = \mathcal{P}$, the ring $S^{-1}B$ has finitely many primes, hence is a principal ideal domain. So we write $S^{-1}Bx = S^{-1}BI$ and $S^{-1}By = S^{-1}BJ$. Then we have

$$N(S^{-1}BI) N(S^{-1}BJ) = N(S^{-1}Bx) N(S^{-1}By)$$

= $N(S^{-1}Bxy) = N(S^{-1}BIJ)$,

and we are done.