
Math 531 Tom Tucker
NOTES FROM CLASS 10/20

We will want to work with norms of ideals in a bit. There is one more
thing to prove about norms first. First a Lemma.

(stuff from p. 24)

Lemma 22.1. Let L be a separable (not necessarily Galois) field ex-
tension of K of degree n, let M be the Galois closure of L over K, and
let G = Gal(M/L). Let HL be the subgroup of G that acts trivially on
L and let H\G be a complete set of left coset representatives for G over
H. Then, for any y ∈ L, we have

TL/K(y) =
∑

σ∈H\G

σ(y)

and

NL/K(y) =
∏

σ∈H\G

σ(y)

Proof. Let y1, . . . , ym. Then we know that

TL/K(y) = [L : K(y)]

(
m∑

i=1

yi

)
and

NL/K(y) =

(
m∏

i=1

yi

)[L:K(y)]

.

Now, let Hy be the subgroup of G that acts identially on K(y). Then

TL/K(y) =
∑

σ∈H\G

σ(y) = [L : K(y)]
∑

σ∈Hy\H

σ(y)

= TL/K(y) = [L : K(y)]

(
m∑

i=1

yi

)
,

and

NL/K(y) =
∏

σ∈H\G

σ(y) =
∏

σ∈Hy\H

σ(y)[L:K(y)]

= NL/K(y) =

(
m∏

i=1

yi

)[L:K(y)]

,

as desired. �
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Proposition 22.2. Let K ⊆ E ⊆ L be finite seprable extension of K.
Then, for any y ∈ L, we have

NL/K(y) = NE/K(NL/E(y)).

Proof. Let M be a Galois extension of K that contains L and let G =
Gal(M/K). Let HE and HL be the subgroups of G that act identically
on E and L respectively. Note that HE is the Galois group for M over
E. Let τ1, . . . , τs represent the cosets HE\G and γ1, . . . , γt represent
the cosets HL\HE, then the τiγj represent the cosets HL\G. Therefore,

NL/K(y) =
∏
i,j

(τiγj)(y) =
s∏

i=1

τi(
t∏

j=1

γj(y)) = NE/K(NL/E(y)).

�

One more thing to prove before getting to norms of ideals.

Proposition 22.3. Let B be a Dedekind domain with finitely many
maximal ideals P. Then B is a principal ideal domain.

Proof. It will suffice to show that every maximal ideal P of B is prin-
cipal. Let P be a maximal ideal of B and let Q1, . . . ,Qm be the other
maximal ideals of B and let

I = Q1 · · · Qm.

Then P2 + I = 1, so we can write x + y = 1 with x ∈ P2 and y ∈ I.
Since P 6= P2 (by unique factorization), there is some a ∈ P \ P2. Let
π = ay + x. Since

y = 1− x ≡ 1 (mod P2),

we see that

ay + x ≡ ay (mod P2) 6≡ 0 (mod P2),

so ay ∈ P \ P2. Also

ay + x ≡ x (mod I) ≡ 1− y (mod I) ≡ 1 (mod I),

so ay + x /∈ Qi for any i. Therefore Bπ must be P . �

Norms of ideals. Back on our usual set-up A Dedekind with field
of fractions K, L a finite seprable extension of K of degree n, B the
integral closure of A in L. We’ll also want A/P to be perfect for every
maximal ideal P . We have already defined the norm NL/K : L −→ K;
it sends B to A (since all the coefficients of the minimal polynomial of
an integral element are integral). When it is clear what field we are
working over we will omit the L/K subscript.
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Definition 22.4. For any ideal I ⊂ B, we define the ideal N(I) to be
the A-ideal generated by all N(x) for x ∈ I.

Properties of the norm (8.1 on p. 42)

Proposition 22.5. The norm map has the following properties

(1) N(By) = A N(y) for any y ∈ B.
(2) If S ⊂ A is a multiplicative subset not containing 0, and I is an

ideal of B, then N(S−1BI) = S−1A N(I).
(3) N(IJ) = N(I) N(J), for any ideals I and J of B.

Proof. 1. We know the norm map is multiplicative since the determi-
nant of matrices is. Since N(B) ⊂ A, it follows that N(By) ⊂ A N(y).
Also, N(y) ⊂ N(By), so A N(y) ⊂ N(By), so N(By) = A N(y).

2. For any y ∈ S−1BI, we can write y = x/s for x ∈ I and s ∈
S. Then N(y) = N(x/s) = N(x)/sn ∈ S−1A N(I), so N(S−1BI) ⊆
S−1A N(I). On the other hand, S−1A N(I) is generated as an S−1A-
module by N(I) and N(I) ⊆ N(S−1BI), so we have S−1A N(I) ⊆
N(S−1BI).

3. This is surprisingly difficult, since we the norm is not additive. On
the other hand, since any ideal of A is determine by its localizations at
all the maximal P of A, it will suffice to show that AP N(I)AP N(J) =
AP N(IJ). From 2, this means we only have to show that

N(S−1BI) N(S−1BJ) = N(S−1BIJ).

Since there are finitely many primes Q ∈ B such that Q∩A = P , the
ring S−1B has finitely many primes, hence is a principal ideal domain.
So we write S−1Bx = S−1BI and S−1By = S−1BJ . Then we have

N(S−1BI) N(S−1BJ) = N(S−1Bx) N(S−1By)

= N(S−1Bxy) = N(S−1BIJ),

and we are done. �


