Math 531 Tom Tucker
NOTES FROM CLASS 10/20

We will want to work with norms of ideals in a bit. There is one more
thing to prove about norms first. First a Lemma.
(stuff from p. 24)

Lemma 22.1. Let L be a separable (not necessarily Galois) field ex-
tension of K of degree n, let M be the Galois closure of L over K, and
let G = Gal(M/L). Let Hy, be the subgroup of G that acts trivially on
L and let H\G be a complete set of left coset representatives for G over
H. Then, for any y € L, we have

Tyx(y) = Y o)

c€H\G

and

Np) =[] o)

oc€H\G

Proof. Let y1,...,ym. Then we know that

Tr/x(y) = [L: K(y)] (Z yi)

m [L:K(y)]
Ni/k(y) = (H yz) :
=1

Now, let H, be the subgroup of G that acts identially on K (y). Then

Twly)= D, oly)=[L:Ky] Y oy

c€H\G c€H\H

=Trk(y) =[L: K(y)] (Z yi> ,

and

and

Ny)= 1] o= ] op"*®

oc€H\G ceH,\H

m [L:K(y)]
= Np/k(y) = (H yz) ;
=1

as desired. O
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Proposition 22.2. Let K C E C L be finite seprable extension of K.
Then, for any y € L, we have

Nz/k(y) = Ng/k(Nr/e(y))-

Proof. Let M be a Galois extension of K that contains L and let G =
Gal(M/K). Let Hg and Hj, be the subgroups of G that act identically
on E and L respectively. Note that Hg is the Galois group for M over
E. Let 1,...,7s represent the cosets Hg\G and ~1,...,7; represent
the cosets Hp\ Hg, then the 7,7, represent the cosets H\G. Therefore,

Nix(y) = [ [ ) = HTi(H 7)) = Ny (Neys(y))-

ij i=

One more thing to prove before getting to norms of ideals.

Proposition 22.3. Let B be a Dedekind domain with finitely many
maximal ideals P. Then B is a principal ideal domain.

Proof. 1t will suffice to show that every maximal ideal P of B is prin-
cipal. Let P be a maximal ideal of B and let Qq, ..., Q,, be the other
maximal ideals of B and let

I=0Q,---0Q,,.
Then P%2 4 I = 1, so we can write z +y = 1 with z € P2 and y € I.
Since P # P? (by unique factorization), there is some a € P\ P2 Let
T = ay + x. Since
y=1—2z=1 (mod P?),
we see that
ay+z=ay (modP?)#£0 (mod P?),
so ay € P\ P2 Also
ay+x=x (modI)=1-—y (modI)=1 (mod I),
so ay +x ¢ Q; for any i. Therefore Br must be P. 0

Norms of ideals. Back on our usual set-up A Dedekind with field
of fractions K, L a finite seprable extension of K of degree n, B the
integral closure of A in L. We'll also want A/P to be perfect for every
maximal ideal P. We have already defined the norm Ny x : L — K;
it sends B to A (since all the coefficients of the minimal polynomial of
an integral element are integral). When it is clear what field we are
working over we will omit the L/K subscript.
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Definition 22.4. For any ideal I C B, we define the ideal N(I) to be
the A-ideal generated by all N(z) for z € I.

Properties of the norm (8.1 on p. 42)

Proposition 22.5. The norm map has the following properties
(1) N(By) = AN(y) for any y € B.
(2) If S C A is a multiplicative subset not containing 0, and I is an
ideal of B, then N(S™'BI) = ST'AN(I).
(3) N({J) = N(I)N(J), for any ideals I and J of B.

Proof. 1. We know the norm map is multiplicative since the determi-
nant of matrices is. Since N(B) C A, it follows that N(By) C AN(y).
Also, N(y) € N(By), so AN(y) C N(By), so N(By) = AN(y).

2. For any y € S7'BI, we can write y = z/s for x € I and s €
S. Then N(y) = N(z/s) = N(z)/s" € STPAN(I), so N(S™'BI) C
STYAN(I). On the other hand, ST!AN([) is generated as an S~1A-
module by N(I) and N(I) C N(S™'BI), so we have ST'AN(I) C
N(S~1BI).

3. This is surprisingly difficult, since we the norm is not additive. On
the other hand, since any ideal of A is determine by its localizations at

all the maximal P of A, it will suffice to show that Ap N(I)Ap N(J) =
Ap N(IJ). From 2, this means we only have to show that

N(S™'BI)N(S™*BJ) = N(S~'BIJ).

Since there are finitely many primes Q € B such that QN A = P, the
ring S7!'B has finitely many primes, hence is a principal ideal domain.
So we write ST!Bx = S'BI and S™'By = S™'BJ. Then we have

N(S™'BI)N(S™'BJ) = N(S~'Bx) N(S~'By)
= N(S~'Bxy) = N(S™'BIJ),

and we are done. O



