
Math 8430 Tom Tucker
NOTES FROM CLASS 10/4

INDICATE WHERE IN THE BOOK CERTAIN THINGS ARE

Corollary 20.1. Let B′ ⊂ B with B′ and B as usual. Then

∆(B/A)(∆(B′/A))−1 = I2

for some ideal I in A.

Proof. Recall that we can compute discriminants locally, and that a
nonzero ideal J if and only if for every maximal P in A, we haveAPJ =
APP2eP for some integer eP . At each P , taking S = A \ P the
AP-modules S−1B and S−1B′ are free AP-modules, so we can apply
the previous Proposition to ∆(S−1B/AP) and ∆(S−1B′/AP). Since
det N ∈ AP , (det N)2 is an even power of P (possibly 0). �

Corollary 20.2. Let B′ be as usual. Let Q be maximal in B′ and let
P = Q∩A. Then AQ is invertible whenever P2 doesn’t divide ∆(B′/A).

Proof. We replace B′ with S−1B′ where S = A \ P , which we’ll just
write as B′. It will suffice to show that B′ is a Dedekind domain, which
is equivalent to showing that it is equal to the integral closure B of AP
in L. As in the proof of Proposition from last time, we choose bases
v1, . . . , vn and w1, . . . , wm for B and B′ respectively, and let N be the

matrix [nij] where wi =
n∑

j=1

nijvj. We let φ : B −→ B/PB and let

N be the matrix [φ(nij)]. Then φ(w1), . . . , φ(wn) is a basis for B/PB
over A/P unless det N = 0. Furthermore, if φ(w1), . . . , φ(wn) is a basis
for B/PB over A/P , then w1, . . . , wn is a basis for B over A, again by
Nakayama’s Lemma, and we must have B′ = B.

Now, det N = 0 if and only if (det N) ⊂ P. But if (det N) ⊂ P, then
∆(B′/A) = (det N)2∆(B/A), which means that ∆(B′/A) ⊂ P2. �

Corollary 20.3. If ∆(B′/A) /∈ P2, then S−1B′ is integrally closed for
S = A \ cP .

Proof. From the previous corollary, we know that all the primies Q in
S−1B′ are invertible. Thus, B′ is Dedekind and therefore integrally
closed. �

We are most interested in the case A = Z, K = Q, and L is a number
field. Suppose we start with θ integral over Z and such that L = Q(θ).
We want to find the integral closure OL (also called the ring of integers
and the maximal order of L). The following proposition (like Prop. 9.1
from the book) gives some info on it.

(Prop. 9.1, p. 47)
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Proposition 20.4. let L = Q(θ) for integral θ. Write |∆(Z[θ]/Z)| =
dm2. Then the every element in the ring of integers OL has the form

a0 + a1θ + · · ·+ an−1θ
n−1

t

with

gcd(a0, . . . , an−1, t) = 1, and t | m

Proof. Denote Z[θ] as B′. If p 6 |m, then setting S = Z \ pZ, the ring
S−1B′ is integrally closed. For any t such that p|t, any element of the
form

a0 + a1θ + · · ·+ anθ
n−1

t

is not in S−1B′ and therefore not integral over Z. Thus,

a0 + a1θ + · · ·+ anθ
n−1

t
∈ OL

with gcd(a0, . . . , an−1, t) = 1 implies that t | m.
�

Remark 20.5. It may very well be that Z[θ] is already closed, so we may
not have to allow any denominators at all not even denominators that
divide m where ∆(Z[θ]/Z) = dm2 for. Look at Z[ 3

√
5], for example,

which has discriminant 3352, but is integrally closed.

Now, to change gears slightly, let’s prove a few facts about our usual
set-up when we take Galois of field K. In what follows, A is Dedekind,
K is its field of fractions, L is a finite Galois extension of K, and B is
the integral closure of A in M .

We have the following Lemma.

Lemma 20.6. Keep the notation above. Let P be a maximal ideal of
A. Let Q1, . . . ,Qm be the primes in B for which Qi ∩ A = P. Then
for every σ ∈ Gal(L/K), the set σ(Qi) is one of the primes Qj of B
lying over P. Furthermore, σ acts on the set {Q1, . . . ,Qm}

Proof. If y is integral over A, then so is σ(y) for any σ ∈ Gal(L/K) (we
showed this earlier). Thus σ : B −→ B isomorphically. In particular,
it sends any prime Qi to some prime Q. Since σ acts identically on K,
we see that σ(Qi∩A) = Qi∩A = P , so σ(Qi)∩A = P and σ(Qi) = Qj

for some j.
To see that Gal(L/K) acts transitively {Q1, . . . ,Qm}, we suppose

that it didn’t. Then we could divide {Q1, . . . ,Qm} into 2 disjoint sets
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T and U such that σ(Qi) ∈ T for each Qi ∈ T and σ(Qi) ∈ U for each
Qi ∈ U . We then let

I =
∏
Qi∈T

Qi and I =
∏
Qj∈U

Qj.

We have σ(I) = I and σ(J) = J . Now, I and J must be coprime, so
we can find x + y = 1 for some x ∈ I and y ∈ J . Then x = 1− y and∏

σ∈Gal(L/K)

σ(x) ∈ I ∩K ⊆ P ⊆ J,

(the last inclusion is because P ⊆ Q1 · · · Qm), but on the other hand∏
σ∈Gal(L/K)

σ(x) =
∏

σ∈Gal(L/K)

σ(1− y) =
∏

σ∈Gal(L/K)

(1− σ(y)) ∈ 1 + J,

which gives a contradiction. �

(Stuff from p. 32-33)

Theorem 20.7. With notation as above (including L Galois over K),
any maximal prime P factors in B as

PB = (Q1 · · · Qm)e

where the Qi are distinct primes B. We also have

[B/Qi : A/P ] = [B/Qj : A/P ]

for any i, j.

Proof. Let Q1, . . . ,Qm be all the primes in B lying over P . Since
P ⊂ A and every element σ ∈ Gal(L/K) acts identially on A, we have
σ(PB) = Pσ(B) = PB. Writing

Qe1
1 · · · Qem

m = PB = σ(PB) = σ(Q1)
e1 · · ·σ(Qm)em ,

we see that ei = ej for every i, j since for any i, j there is some σ such
that σ(Qi) = σ(Qj). Letting e = ei, we have

PB = (Q1 · · · Qm)e.

Since σ ∈ Gal(L/K) is an automorphism that fixes A, it induces an
automorphism of A/P vector spaces from B/Qi to B/σ(Qi). Since σ
acts transitively, this means that

[B/Qi : A/P ] = [B/Qj : A/P ]

for every i, j. �

We will want to work with norms of ideals in a bit. There is one
more thing to prove about norms first. First a Lemma.

(stuff from p. 24)
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Lemma 20.8. Let L be a separable (not necessarily Galois) field ex-
tension of K of degree n, let M be the Galois closure of L over K, and
let G = Gal(M/L). Let HL be the subgroup of G that acts trivially on
L and let H\G be a complete set of coset representatives for G over H.
Then, for any y ∈ L, we have

TL/K(y) =
∑

σ∈H\G

σ(y)

and
NL/K(y) =

∏
σ∈H\G

σ(y)


