Math 531 Tom Tucker

NOTES FROM CLASS 10/13
We were in the middle of proving the following...
Lemma 19.1. Let A and B^{\prime} be as last time. Let \mathcal{P} be a maximal prime of A, let $k=A / \mathcal{P}$, let $S=A \backslash \mathcal{P}$, and let $\phi: S^{-1} B^{\prime} \longrightarrow S^{-1} B^{\prime} / S^{-1} B^{\prime} \mathcal{P}$ be the usual quotient map. Let us denote $S^{-1} B^{\prime} / S^{-1} B^{\prime} \mathcal{P}$ as C. Then for any $y \in S^{-1} B^{\prime}$, we have $\phi\left(T_{L / K}(y)\right)=\mathrm{T}_{C / k}(\phi(y))$.

Proof. Let $\bar{w}_{1}, \ldots, \bar{w}_{n}$ be a basis for C over k and pick $w_{i} \in B^{\prime}$ such that $\phi\left(w_{i}\right)=\bar{w}_{i}$. Since the \bar{w}_{i} are linearly independent, the w_{i} must be as well. To see this, suppose that $\sum_{i=1}^{n} a_{i} w_{i}=0$ for $a_{i} \in S^{-1} B^{\prime}$ (remember that everything in L is x / a for $x \in B^{\prime}$ and $a \in A$). By dividing through by a power of a generator π for $A_{\mathcal{P}} \mathcal{P}$, we can assume that not all of the a_{i} are in $S^{-1} B^{\prime} \mathcal{P}$. This means then that $\sum_{i=1}^{n} \phi\left(a_{i}\right) \bar{w}_{i}=0$, with some $\phi\left(a_{i}\right) \neq 0$, which is impossible. Now, we are essentially done, since we can define the trace of any $y \in B^{\prime}$ with respect to this basis. We have

$$
y w_{i}=\sum_{j=1}^{n} m_{i j} w_{j}
$$

with $m_{i j} \in A$, and

$$
\phi(y) \bar{w}_{i}=\sum_{j=1}^{n} \phi\left(m_{i j}\right) \bar{w}_{j} .
$$

Hence,

$$
\phi\left(\mathrm{T}_{L / K}(y)\right)=\sum_{i=1}^{n} \phi\left(m_{i i}\right)=\mathrm{T}_{C / k}(\phi(y)) .
$$

We need one quick lemma from linear algebra.
Lemma 19.2. Let V be a vector space. Let $\phi: V \longrightarrow V$ be a linear map. Suppose that $\phi^{k}=0$ for some $k \geq 1$. Then the trace of ϕ is zero.
Proof. This is on your HW.
When B is the integral closure of A in L, and \mathcal{P} is maximal in A, we can write

$$
\mathcal{P} B=\mathcal{Q}_{1}^{e_{1}} \cdots \mathcal{Q}_{m}^{e_{m}} .
$$

If $e_{i}>1$ for some i, then we say that \mathcal{P} ramifies in B. When $B=A[\alpha]$, we know that \mathcal{P} ramifies in B if and only if $\Delta(B / A) \subseteq \mathcal{P}$. That is true more generally.

Theorem 19.3. Let B be the integral closure of A in L and let \mathcal{P} be maximal in A. Then \mathcal{P} ramifies in B if and only if $\Delta(B / A) \subseteq \mathcal{P}$.

Proof. It will suffice to prove this locally, that is to say, it will suffice to replace A with $A_{\mathcal{P}}$ and B with $S^{-1} B$ where $S=A \backslash \mathcal{P}$. As in the previous Lemma, we write $k=A / \mathcal{P}$ and $C=S^{-1} B / \mathcal{P} S^{-1} B$ and let

$$
\phi: S^{-1} B \longrightarrow S^{-1} B / \mathcal{P} S^{-1} B
$$

Also, as in that Lemma let $\bar{w}_{1}, \ldots, \bar{w}_{n}$ be basis for C over k and pick $w_{i} \in S^{-1} B$ such that $\phi\left(w_{i}\right)=\bar{w}_{i}$. It is clear then that

$$
A_{\mathcal{P}} w_{1}+\ldots A_{\mathcal{P}} w_{n}+\mathcal{P} S^{-1} B=S^{-1} B
$$

so by Nakayama's Lemma, the w_{i} generate $S^{-1} B$ as an $A_{\mathcal{P}}$ module. From the Lemma above we have $T_{L / K}\left(w_{i} w_{j}\right)=T_{C / k}\left(\bar{w}_{i} \bar{w}_{j}\right)$, so the matrix $M=\left[\mathrm{T}_{C / k}\left(\bar{w}_{i} \bar{w}_{j}\right)\right]$ represents the form $(x, y)=\mathrm{T}_{C / k}(x y)$ on C / k. Let us now decompose C / k as ring, we have

$$
C \cong S^{-1} B / \mathcal{P} S^{-1} B \cong \bigoplus_{i=1}^{m} S^{-1} B / S^{-1} B \mathcal{Q}_{i}^{e_{i}}
$$

where

$$
\mathcal{P} B=\mathcal{Q}_{1}^{e_{1}} \cdots \mathcal{Q}_{m}^{e_{m}}
$$

If $e_{i}>1$, then any element $z \in C$ such that $z=0$ in every coordinate but i and has i-th coordinate in \mathcal{Q}_{i}, has the property that $z^{e_{i}}=0$. This means that the pairing

$$
(x, y)=T_{C / k}(x y)
$$

on C is degenerate from your homework.
If $e_{i}=1$ for every i, then

$$
C \cong S^{-1} B / S^{-1} B \mathcal{Q}_{1} \oplus \cdots \oplus S^{-1} B / S^{-1} B \mathcal{Q}_{m}
$$

and $S^{-1} B / S^{-1} B \mathcal{Q}_{i}$ is separable over k for each i. The trace form $(x, y)=\mathrm{T}_{C / k}(x y)$ decomposes into a sum of forms

$$
(a, b)=\mathrm{T}_{\left(S^{-1} B / S^{-1} B \mathcal{Q}_{i}\right) / k}(a b)
$$

each of which is nondegenerate, so (x, y) is nondegenerate, so

$$
\operatorname{det}\left[\mathrm{T}_{L / K}\left(w_{i} w_{j}\right)\right] \notin \mathcal{P},
$$

and we are done.

Here is a simple and easy to prove fact comparing the discriminants of different subrings B and B^{\prime} of L

Proposition 19.4. Let $B^{\prime} \subset B$ where B and B^{\prime} are as usual (we will usually take B to the be the integral closure of A in L). Suppose that B has a basis v_{1}, \ldots, v_{n} as an A-module and that B^{\prime} has a basis w_{1}, \ldots, w_{n} as an A-module. Writing

$$
w_{i}=\sum_{\ell=1}^{n} n_{i \ell} a_{\ell},
$$

and letting N be the matrix $\left[n_{i \ell}\right]$, we have

$$
\begin{equation*}
\operatorname{det}\left[\mathrm{T}_{L / K}\left(w_{i} w_{j}\right)\right]=(\operatorname{det} N)^{2} \operatorname{det}\left[\mathrm{~T}_{L / K}\left(v_{i} v_{j}\right)\right] \tag{1}
\end{equation*}
$$

Proof. Now,

$$
\mathrm{T}_{L / K}\left(w_{i} w_{j}\right)=\sum_{\ell=1}^{n} \sum_{k=1}^{n} n_{i \ell} n_{j k} \mathrm{~T}_{L / K}\left(v_{i} v_{j}\right) .
$$

A bit of linear algebra shows that this is exactly the same as the $i j$-th coordinate of the matrix $N^{t} M N$ where $M=\left[\mathrm{T}_{L / K}\left(v_{i} v_{j}\right)\right]$. Equation 1 follows. I gave an easier explanation on the board.

