Math 531 Tom Tucker

NOTES FROM CLASS 10/11/04
For an element $\alpha \notin A$ that is integral over A, we define the discriminant $\Delta(\alpha / A)$ to be $\Delta(F)$ where F is the minimal monic for α over A. We also define the discriminant $\Delta(A[\alpha])$ to be $\Delta(A[\alpha])$.

Given a Dedekind domain A with field of fractions K and a finite separable extension L of K of degree n we want to be able to define a discriminant $\Delta\left(B^{\prime} / A\right)$ of any subring B^{\prime} of L. This will involve working with a basis for L over K that consists entirely of elements contained in B^{\prime}

A bit more on subrings of the integral closure.
Proposition 18.1. Let A be an integral domain with field of fractions K and let L be a finite extension of K. Suppose that $B^{\prime} \subset L$ has field of fractions L and is integral over A. Then, for every element $y \in L$ there exists $a \in A$ such that ay $\in L$.

Proof. Let $y=\alpha / \beta$ for $\alpha, \beta \in B^{\prime}$ with $\alpha, \beta \neq 0$. We will show that $\alpha / \beta=b / a$ for $b \in B^{\prime}$ and $a \in A$. We know that the ideal $B^{\prime} \beta$ has nonzero intersection with A by taking the constant term of the minimal monic polynomial for β over A. Thus, we can write $\gamma \beta=a$ for some nonzero $a \in A$. Then $1 / \beta=\gamma / a$, so $\alpha / \beta=\alpha \gamma / a$ and we are done, since this means that $a(\alpha / \beta) \in B^{\prime}$.

For the rest of class, A is Dedekind with field of fractions K, the field L is a finite separable extension of K of degree n, and B^{\prime} is a subring of L that is integral over A. We will also assume that for every maximal ideal \mathcal{P} of A, the residue field A / \mathcal{P} is perfect.

We'll begin with a definition that works when B^{\prime} is a free A-module, i.e. when B^{\prime} is isomorphic as an A-module to A^{n}, where $n=[L: K]$. In this case, we choose a basis w_{1}, \ldots, w_{n} for B^{\prime} over A and we let M be the matrix $\left[m_{i j}\right]$ where $m_{i j}=\mathrm{T}_{L / K}\left(w_{i} w_{j}\right)$. Then we define

$$
\begin{equation*}
\Delta\left(B^{\prime}\right)=\operatorname{det} M \tag{1}
\end{equation*}
$$

How do we know that this agrees with our earlier definition in the case $B^{\prime}=A[\alpha]$? In fact, it more or less follows from some earlier work we did. Recall that in this case, we can choose the basis $1, \alpha, \ldots, \alpha^{n-1}$, so that $\left[m_{i j}\right]=\left[\mathrm{T}_{L / K}\left(\alpha^{i+j-2}\right)\right]$, which we recall is equal to

$$
\sum_{\ell=1}^{n} \alpha_{\ell}^{i+j-2}
$$

As we saw earlier, letting N be the van der Monde matrix

$$
\left(\begin{array}{lll}
1 & \cdots & 1 \\
\alpha_{1} & \cdots & \alpha_{n} \\
\cdots & \cdots & \cdots \\
\alpha_{1}^{n-1} & \cdots & \alpha_{n}^{n-1}
\end{array}\right)
$$

we have $N N^{t}=M$, so

$$
\operatorname{det} M=(\operatorname{det} N)^{2}=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2},
$$

which is the same as $\Delta(\alpha)$, so our definitions agree.
Not all B^{\prime} will be free A-modules, however, so we have the more general definition below.

Definition 18.2. With notation as above $\Delta\left(B^{\prime} / A\right)$ is defined to be ideal generated by the determinants of all matrices $M=\left[\mathrm{T}_{L / K}\left(w_{i} w_{j}\right)\right]$ as w_{1}, \ldots, w_{n} range over all bases for L consisting of elements contained in B^{\prime}.

Example 18.3. The reason that we need to talk about the discriminant relative to A is that B^{\prime} could be defined over two different Dedekind domains. For example, we could take $B^{\prime}=\mathbb{Z}[\sqrt{3}, \sqrt{7}]$ which is an extension of \mathbb{Z} as well as of $\mathbb{Z}[\sqrt{3}]$ and $\mathbb{Z}[\sqrt{7}]$. The various discriminants $\Delta\left(B^{\prime} / \mathbb{Z}\right), \Delta\left(B^{\prime} / \mathbb{Z}[\sqrt{3}]\right)$, and $\Delta\left(B^{\prime} / \mathbb{Z}[\sqrt{7}]\right)$ may all be different.

One nice fact about discriminants is that they can be computed locally. We have the following.

Proposition 18.4. With notation as throughout lecture, let S be a multiplicative subset of A not containing 0 . Then

$$
S^{-1} A \Delta\left(B^{\prime} / A\right)=\Delta\left(S^{-1} B^{\prime} / S^{-1} A\right)
$$

Proof. Since any basis with elements in B^{\prime} is also in $S^{-1} B^{\prime}$, it is obvious that

$$
S^{-1} A \Delta\left(B^{\prime} / A\right) \subseteq \Delta\left(S^{-1} B^{\prime} / S^{-1} A\right) .
$$

Similarly, given a basis v_{1}, \ldots, v_{n} for L / K contained in $S^{-1} B^{\prime}$, see that the basis w_{1}, \ldots, w_{n} where $w_{i}=s v_{i}$ is contained in B^{\prime} for some $s \in S$. Now

$$
\operatorname{det}\left(T_{L / K}\left(w_{i} w_{j}\right)\right)=s^{n} \operatorname{det}\left(T_{L / K}\left(v_{i} v_{j}\right)\right)
$$

so $S^{-1} A \Delta\left(B^{\prime} / A\right) \supseteq \Delta\left(S^{-1} B^{\prime} / S^{-1} A\right)$.

We know that $\Delta\left(B^{\prime} / A\right)$ is an ideal I. If $I=\prod_{i=1}^{m} \mathcal{P}_{i}^{e_{i}}$, then $A_{\mathcal{P}_{i}} I=\mathcal{P}_{i}^{e_{i}}$, so to figure out what $\Delta\left(B^{\prime} / A\right)$ is, all we have to do is figure out what $\Delta\left(S^{-1} B^{\prime} / S^{-1} A\right)$ is for $S=A \backslash \mathcal{P}$.

The trace also behaves well with respect to reduction. Recall that as on the homework, whenever we have a finite integral extension of a field, we can define a trace. We'll apply that with the field $k=A / \mathcal{P}$ for a maximal ideal \mathcal{P} of A. Since this computation is local, we will work over $A_{\mathcal{P}}$ (which is a DVR). This is just for simplicity, since we have $B^{\prime} / \mathcal{P} B^{\prime} \cong S^{-1} B^{\prime} / S^{-1} B^{\prime} \mathcal{P}$, so it isn't hard to see that the local computation gives the computation over A.

Lemma 18.5. Let A and B^{\prime} be as usual. Let \mathcal{P} be a maximal prime of A, let $k=A / \mathcal{P}$, let $S=A \backslash \mathcal{P}$, and let $\phi: S^{-1} B^{\prime} \longrightarrow S^{-1} B^{\prime} / S^{-1} B^{\prime} \mathcal{P}$ be the usual quotient map. Let us denote $S^{-1} B^{\prime} / S^{-1} B^{\prime} \mathcal{P}$ as C. Then for any $y \in S^{-1} B^{\prime}$, we have $\phi\left(T_{L / K}(y)\right)=\mathrm{T}_{C / k}(\phi(y))$.
Proof. Let $\bar{w}_{1}, \ldots, \bar{w}_{n}$ be a basis for C over k and pick $w_{i} \in B^{\prime}$ such that $\phi\left(w_{i}\right)=\bar{w}_{i}$. Since the \bar{w}_{i} are linearly independent, the w_{i} must be as well. To see this, suppose that $\sum_{i=1}^{n} a_{i} w_{i}=0$ for $a_{i} \in S^{-1} B^{\prime}$ (remember that everything in L is x / a for $x \in B^{\prime}$ and $a \in A$). By dividing through by a power of a generator π for $A_{\mathcal{P}} \mathcal{P}$, we can assume that not all of the a_{i} are in $S^{-1} B^{\prime} \mathcal{P}$. This means then that $\sum_{i=1}^{n} \phi\left(a_{i}\right) \bar{w}_{i}=0$, with some $\phi\left(a_{i}\right) \neq 0$, which is impossible. Now, we are essentially done, since we can define the trace of any $y \in B^{\prime}$ with respect to this basis. We have

$$
y w_{i}=\sum_{j=1}^{n} m_{i j} w_{j}
$$

with $m_{i j} \in A$, and

$$
\phi(y) \bar{w}_{i}=\sum_{j=1}^{n} \phi\left(m_{i j}\right) \bar{w}_{j} .
$$

Hence,

$$
\phi\left(\mathrm{T}_{L / K}(y)\right)=\sum_{i=1}^{n} \phi\left(m_{i i}\right)=\mathrm{T}_{C / k}(\phi(y)) .
$$

