Math 531 Tom Tucker
NOTES FROM CLASS 10/11/04

For an element o ¢ A that is integral over A, we define the discrim-
inant A(a/A) to be A(F') where F is the minimal monic for a over A.
We also define the discriminant A(A[a]) to be A(Ala]).

Given a Dedekind domain A with field of fractions K and a finite
separable extension L of K of degree n we want to be able to define a
discriminant A(B’/A) of any subring B’ of L. This will involve working
with a basis for L over K that consists entirely of elements contained
in B’

A bit more on subrings of the integral closure.

Proposition 18.1. Let A be an integral domain with field of fractions
K and let L be a finite extension of K. Suppose that B' C L has field
of fractions L and is integral over A. Then, for every element y € L
there exists a € A such that ay € L.

Proof. Let y = o/ for o, € B' with a, 3 # 0. We will show that
a/f =b/a for b € B' and a € A. We know that the ideal B’ has
nonzero intersection with A by taking the constant term of the minimal
monic polynomial for 3 over A. Thus, we can write 73 = a for some
nonzero a € A. Then 1/8 = v/a, so a/f = ay/a and we are done,
since this means that a(a/3) € B'. O

For the rest of class, A is Dedekind with field of fractions K, the field
L is a finite separable extension of K of degree n, and B’ is a subring of
L that is integral over A. We will also assume that for every maximal
ideal P of A, the residue field A/P is perfect.

We'll begin with a definition that works when B’ is a free A-module,
i.e. when B’ is isomorphic as an A-module to A", where n = [L : K].
In this case, we choose a basis wy, ..., w, for B’ over A and we let M
be the matrix [m;;] where m;; = Tk (wsw;). Then we define

(1) A(B') = det M.

How do we know that this agrees with our earlier definition in the case
B’ = Ala]? In fact, it more or less follows from some earlier work we

did. Recall that in this case, we can choose the basis 1,a,...,a" !, so
that [m;;] = [Tr/x(a’™~2)], which we recall is equal to
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As we saw earlier, letting N be the van der Monde matrix
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we have NN = M, so

det M = (det N)2 = H(Oél — Oéj)2,
i<j
which is the same as A(«), so our definitions agree.

Not all B’ will be free A-modules, however, so we have the more
general definition below.

Definition 18.2. With notation as above A(B’/A) is defined to be
ideal generated by the determinants of all matrices M = [Tk (w;w;)]
as wy, . . . , w, range over all bases for L consisting of elements contained
in B'.

Example 18.3. The reason that we need to talk about the discrimi-
nant relative to A is that B’ could be defined over two different Dedekind
domains. For example, we could take B’ = Z[v/3,+/7] which is an ex-
tension of Z as well as of Z[v/3] and Z[v/7]. The various discriminants
A(B'/Z), A(B'JZ]\/3]), and A(B'/Z[v/7]) may all be different.

One nice fact about discriminants is that they can be computed
locally. We have the following.

Proposition 18.4. With notation as throughout lecture, let S be a
multiplicative subset of A not containing 0. Then

STTAA(B'/A) = A(S7'B'/S7A).

Proof. Since any basis with elements in B’ is also in S~1B’, it is obvious
that

STYAA(B'/A) C A(S~'B//S7A).

Similarly, given a basis vy,...,v, for L/K contained in S™'B’, see
that the basis wq, ..., w, where w; = sv; is contained in B’ for some
s € S. Now

det(Tr/x (wsw;)) = " det(Tr K (viv;))),
so STTAA(B'/A) D A(STIB'/STTA). O



We know that A(B’/A) is an ideal I. If I = [] P{, then Ap.I = P},
i=1
so to figure out what A(B’/A) is, all we have to do is figure out what
A(STIB'/S7tA) is for S = A\ P.

The trace also behaves well with respect to reduction. Recall that
as on the homework, whenever we have a finite integral extension of a
field, we can define a trace. We'll apply that with the field £ = A/P
for a maximal ideal P of A. Since this computation is local, we will
work over Ap (which is a DVR). This is just for simplicity, since we
have B'/PB’ = S7'B'/S7'B'P, so it isn’t hard to see that the local
computation gives the computation over A.

Lemma 18.5. Let A and B’ be as usual. Let P be a mazximal prime of
A letk=A/P,let S=A\P, and let ¢ : ST'B' — S™'B'/S™'B'P
be the usual quotient map. Let us denote ST'B'/S™1B'P as C. Then
for any y € ST1B’, we have O(Tryk(y)) = Tem(o(y)).

Proof. Let wy, ..., w, be a basis for C over k and pick w; € B’ such that
¢(w;) = w;. Since the w; are linearly independent, the w; must be as

well. To see this, suppose that Z a;w; = 0 for a; € ST'B’ (remember

that everything in L is z/a for x E B’ and a € A). By dividing through
by a power of a generator m for ApP, we can assume that not all of

the a; are in S™!B"P. This means then that Y ¢(a;)w; = 0, with some
i=1

®(a;) # 0, which is impossible. Now, we are essentially done, since we

can define the trace of any y € B’ with respect to this basis. We have

n
yw; = Z m;w;
j=1
with my; € A, and
n
D= d(mi)w;
j=1

Hence,



