
Math 531 Tom Tucker
NOTES FROM CLASS 10/11/04

For an element α /∈ A that is integral over A, we define the discrim-
inant ∆(α/A) to be ∆(F ) where F is the minimal monic for α over A.
We also define the discriminant ∆(A[α]) to be ∆(A[α]).

Given a Dedekind domain A with field of fractions K and a finite
separable extension L of K of degree n we want to be able to define a
discriminant ∆(B′/A) of any subring B′ of L. This will involve working
with a basis for L over K that consists entirely of elements contained
in B′

A bit more on subrings of the integral closure.

Proposition 18.1. Let A be an integral domain with field of fractions
K and let L be a finite extension of K. Suppose that B′ ⊂ L has field
of fractions L and is integral over A. Then, for every element y ∈ L
there exists a ∈ A such that ay ∈ L.

Proof. Let y = α/β for α, β ∈ B′ with α, β 6= 0. We will show that
α/β = b/a for b ∈ B′ and a ∈ A. We know that the ideal B′β has
nonzero intersection with A by taking the constant term of the minimal
monic polynomial for β over A. Thus, we can write γβ = a for some
nonzero a ∈ A. Then 1/β = γ/a, so α/β = αγ/a and we are done,
since this means that a(α/β) ∈ B′. �

For the rest of class, A is Dedekind with field of fractions K, the field
L is a finite separable extension of K of degree n, and B′ is a subring of
L that is integral over A. We will also assume that for every maximal
ideal P of A, the residue field A/P is perfect.

We’ll begin with a definition that works when B′ is a free A-module,
i.e. when B′ is isomorphic as an A-module to An, where n = [L : K].
In this case, we choose a basis w1, . . . , wn for B′ over A and we let M
be the matrix [mij] where mij = TL/K(wiwj). Then we define

(1) ∆(B′) = det M.

How do we know that this agrees with our earlier definition in the case
B′ = A[α]? In fact, it more or less follows from some earlier work we
did. Recall that in this case, we can choose the basis 1, α, . . . , αn−1, so
that [mij] = [TL/K(αi+j−2)], which we recall is equal to

n∑
`=1

αi+j−2
` .
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As we saw earlier, letting N be the van der Monde matrix
1 · · · 1
α1 · · · αn

· · · · · · · · ·
αn−1

1 · · · αn−1
n

 ,

we have NN t = M , so

det M = (det N)2 =
∏
i<j

(αi − αj)
2,

which is the same as ∆(α), so our definitions agree.
Not all B′ will be free A-modules, however, so we have the more

general definition below.

Definition 18.2. With notation as above ∆(B′/A) is defined to be
ideal generated by the determinants of all matrices M = [TL/K(wiwj)]
as w1, . . . , wn range over all bases for L consisting of elements contained
in B′.

Example 18.3. The reason that we need to talk about the discrimi-
nant relative to A is that B′ could be defined over two different Dedekind
domains. For example, we could take B′ = Z[

√
3,
√

7] which is an ex-
tension of Z as well as of Z[

√
3] and Z[

√
7]. The various discriminants

∆(B′/Z), ∆(B′/Z[
√

3]), and ∆(B′/Z[
√

7]) may all be different.

One nice fact about discriminants is that they can be computed
locally. We have the following.

Proposition 18.4. With notation as throughout lecture, let S be a
multiplicative subset of A not containing 0. Then

S−1A∆(B′/A) = ∆(S−1B′/S−1A).

Proof. Since any basis with elements in B′ is also in S−1B′, it is obvious
that

S−1A∆(B′/A) ⊆ ∆(S−1B′/S−1A).

Similarly, given a basis v1, . . . , vn for L/K contained in S−1B′, see
that the basis w1, . . . , wn where wi = svi is contained in B′ for some
s ∈ S. Now

det(TL/K(wiwj)) = sn det(TL/K(vivj)),

so S−1A∆(B′/A) ⊇ ∆(S−1B′/S−1A). �
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We know that ∆(B′/A) is an ideal I. If I =
m∏

i=1

Pei
i , then APi

I = Pei
i ,

so to figure out what ∆(B′/A) is, all we have to do is figure out what
∆(S−1B′/S−1A) is for S = A \ P .

The trace also behaves well with respect to reduction. Recall that
as on the homework, whenever we have a finite integral extension of a
field, we can define a trace. We’ll apply that with the field k = A/P
for a maximal ideal P of A. Since this computation is local, we will
work over AP (which is a DVR). This is just for simplicity, since we
have B′/PB′ ∼= S−1B′/S−1B′P , so it isn’t hard to see that the local
computation gives the computation over A.

Lemma 18.5. Let A and B′ be as usual. Let P be a maximal prime of
A, let k = A/P, let S = A \ P, and let φ : S−1B′ −→ S−1B′/S−1B′P
be the usual quotient map. Let us denote S−1B′/S−1B′P as C. Then
for any y ∈ S−1B′, we have φ(TL/K(y)) = TC/k(φ(y)).

Proof. Let w̄1, . . . , w̄n be a basis for C over k and pick wi ∈ B′ such that
φ(wi) = w̄i. Since the w̄i are linearly independent, the wi must be as

well. To see this, suppose that
n∑

i=1

aiwi = 0 for ai ∈ S−1B′ (remember

that everything in L is x/a for x ∈ B′ and a ∈ A). By dividing through
by a power of a generator π for APP , we can assume that not all of

the ai are in S−1B′P . This means then that
n∑

i=1

φ(ai)w̄i = 0, with some

φ(ai) 6= 0, which is impossible. Now, we are essentially done, since we
can define the trace of any y ∈ B′ with respect to this basis. We have

ywi =
n∑

j=1

mijwj

with mij ∈ A, and

φ(y)w̄i =
n∑

j=1

φ(mij)w̄j.

Hence,

φ(TL/K(y)) =
n∑

i=1

φ(mii) = TC/k(φ(y)).
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