
Math 531 Tom Tucker
NOTES FROM CLASS 10/8

It is easy to see that ∆(F ) ∈ K. To see this, note that if the roots
of F are distinct, then K(α1, . . . , αn) is Galois over K and

∏
i6=j

(αi−αj)

is certainly invariant under the Galois group of K(α1, . . . , αn) over K.
It follows that ∆(F ) ∈ K. To see this, note that if the roots of F
are distinct, then K(α1, . . . , αn) is Galois over K and

∏
i6=j

(αi − αj) is

certainly invariant under the Galois group of K(α1, . . . , αn) over K.
Here are some other, often easier ways of writing the discriminant...
Let F be monic over K. Then

∆(F ) = (−1)n(n−1)/2

n∏
i=1

F ′(αi).

This is quite easy to see, since if F (X) =
n∏

i=1

(X − αi), then by the

product rule, F ′(X) =
m∑

i=1

∏
i6=j

(αi − αj), so F ′(αi) =
∏
j 6=i

(αi − αj) and

n∏
i=1

F ′(αi) =
∏
i6=j

(αi − αj).

When F is monic and irreducible with and L = K(α) is separable
for a root α of F , this yields

∆(F ) = (−1)n(n−1)/2 NL/K(F ′(α)).

Since F ′ has coefficients in K, we see that if α1, . . . , αn are the conju-

gates of α, then NL/K(F ′(α)) =
m∏

i=1

F ′(αi) and we are done.

Recall this key fact from last time:

Corollary 17.1. Let A be a Dedekind domain with field of fractions
K and let P be a maximal prime in A and suppose that A/P = k is
a perfect field. Then the reduction F̄ of F modulo P has distinct roots
in the algebraic closure of A/P if and only if ∆(F ) /∈ P.

Let’s do some examples of Dedekind domains today. We’ll start with
Q( 3
√

5), which we will show is Dedekind. First of all, we’ll calculate the
discriminant of Z[ 3

√
5]. We see that the minimal polynomial of 3

√
5 is

F (X) = X3 − 5, which has derivative 3X2, so

∆(F ) = NQ( 3√5)(F
′(

3
√

5)) = NQ( 3√5)(3
3
√

5
2
) = 3352,

1



2

so we know that any non-invertible primes must lie over 3 or 5, since
a prime (Q, gi(

3
√

5)) can fail to be invertible if and only if g2 | F
(mod pZ) where Q∩ Z = pZ.

Let’s factor over 5 and see what happens... We get X3 − 5 ≡ X3

(mod 5), so we get the prime ( 3
√

5, 5) which is certainly generated by
3
√

5 and hence is principal and thus invertible. Over 3, things are a
bit more complicated. We factor as X3 − 5 ≡ (X − 5)3 (mod 3), so
we have the ideal ( 3

√
5− 5, 3), which we denote as Q. How can we tell

whether or not this is locally principal? Let’s recall a bit about the
norm.

One way to check if an integer n is in the ideal generated by an ele-
ment β in an integral extension ring is to see if n is the ideal generated
by the norm of β. Let’s apply this idea to the above we see that

NQ 3√5/Q(
3
√

5−5) = (1− 3
√

5)(1+
3
√

5+
3
√

5
2
) = 5−125 = −120 = (−40)·3.

Since −40 is unit in Z[ 3
√

5]Q, it follows that

Z[
3
√

5]Q(
3
√

5− 5) = Z[
3
√

5]QQ,

so Q is locally principal, as desired. Thus, we see that Z[ 3
√

5] is a
Dedekind domain as desired.

What about Z[ 3
√

19]? Calculating the discriminant yields 33 · 192.
Again, it is easy to see that the prime lying over 19 is just 3

√
19. But the

prime lying over 3 is trickier. We see that the only prime Q ∈ Z[ 3
√

19]
such that Q ∩ Z = 3Z is the prime ( 3

√
19− 19, 3). Modulo 3 we have

(X − 19)3 = X − 19 (mod 3).

From some work from last time, ( 3
√

19− 19, 3) is invertible if and only
if the remainder of X3 − 19 modulo X − 19 is divisble by 32. We see
that

(X3 − 19) = (X − 19)(X2 + 19X + 19) + 193 − 19.

Since
193 − 19 ∼= −18 (mod 9) ∼= 0 (mod 19)

we see that ( 3
√

19− 19, 3) is not invertible.
In fact, we can generalize this to show that if a is a square-free integer

and p is a prime, then Z[ p
√

a] is Dedekind if and only if ap − a 6≡ 0
(mod p2). This will be on your homework.


