Math 531 Tom Tucker

NOTES FROM CLASS 10/8
It is easy to see that $\Delta(F) \in K$. To see this, note that if the roots of F are distinct, then $K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is Galois over K and $\prod_{i \neq j}\left(\alpha_{i}-\alpha_{j}\right)$ is certainly invariant under the Galois group of $K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ over K. It follows that $\Delta(F) \in K$. To see this, note that if the roots of F are distinct, then $K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is Galois over K and $\prod_{i \neq j}\left(\alpha_{i}-\alpha_{j}\right)$ is certainly invariant under the Galois group of $K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ over K.

Here are some other, often easier ways of writing the discriminant...
Let F be monic over K. Then

$$
\Delta(F)=(-1)^{n(n-1) / 2} \prod_{i=1}^{n} F^{\prime}\left(\alpha_{i}\right)
$$

This is quite easy to see, since if $F(X)=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)$, then by the product rule, $F^{\prime}(X)=\sum_{i=1}^{m} \prod_{i \neq j}\left(\alpha_{i}-\alpha_{j}\right)$, so $F^{\prime}\left(\alpha_{i}\right)=\prod_{j \neq i}\left(\alpha_{i}-\alpha_{j}\right)$ and $\prod_{i=1}^{n} F^{\prime}\left(\alpha_{i}\right)=\prod_{i \neq j}\left(\alpha_{i}-\alpha_{j}\right)$.

When F is monic and irreducible with and $L=K(\alpha)$ is separable for a root α of F, this yields

$$
\Delta(F)=(-1)^{n(n-1) / 2} \mathrm{~N}_{L / K}\left(F^{\prime}(\alpha)\right)
$$

Since F^{\prime} has coefficients in K, we see that if $\alpha_{1}, \ldots, \alpha_{n}$ are the conjugates of α, then $\mathrm{N}_{L / K}\left(F^{\prime}(\alpha)\right)=\prod_{i=1}^{m} F^{\prime}\left(\alpha_{i}\right)$ and we are done.

Recall this key fact from last time:
Corollary 17.1. Let A be a Dedekind domain with field of fractions K and let \mathcal{P} be a maximal prime in A and suppose that $A / \mathcal{P}=k$ is a perfect field. Then the reduction \bar{F} of F modulo \mathcal{P} has distinct roots in the algebraic closure of A / \mathcal{P} if and only if $\Delta(F) \notin \mathcal{P}$.

Let's do some examples of Dedekind domains today. We'll start with $\mathbb{Q}(\sqrt[3]{5})$, which we will show is Dedekind. First of all, we'll calculate the discriminant of $\mathbb{Z}[\sqrt[3]{5}]$. We see that the minimal polynomial of $\sqrt[3]{5}$ is $F(X)=X^{3}-5$, which has derivative $3 X^{2}$, so

$$
\Delta(F)=\mathrm{N}_{\mathbb{Q}(\sqrt[3]{5})}\left(F^{\prime}(\sqrt[3]{5})\right)=\mathrm{N}_{\mathbb{Q}(\sqrt[3]{5})}\left(3 \sqrt[3]{5}^{2}\right)=3^{3} 5^{2}
$$

so we know that any non-invertible primes must lie over 3 or 5 , since a prime $\left(\mathcal{Q}, g_{i}(\sqrt[3]{5})\right)$ can fail to be invertible if and only if $g^{2} \mid F$ $(\bmod p \mathbb{Z})$ where $\mathcal{Q} \cap \mathbb{Z}=p \mathbb{Z}$.

Let's factor over 5 and see what happens... We get $X^{3}-5 \equiv X^{3}$ $(\bmod 5)$, so we get the prime $(\sqrt[3]{5}, 5)$ which is certainly generated by $\sqrt[3]{5}$ and hence is principal and thus invertible. Over 3, things are a bit more complicated. We factor as $X^{3}-5 \equiv(X-5)^{3}(\bmod 3)$, so we have the ideal $(\sqrt[3]{5}-5,3)$, which we denote as \mathcal{Q}. How can we tell whether or not this is locally principal? Let's recall a bit about the norm.

One way to check if an integer n is in the ideal generated by an element β in an integral extension ring is to see if n is the ideal generated by the norm of β. Let's apply this idea to the above we see that
$\mathrm{N}_{\mathbb{Q}} \sqrt[3]{5} / \mathbb{Q}(\sqrt[3]{5}-5)=(1-\sqrt[3]{5})\left(1+\sqrt[3]{5}+\sqrt[3]{5}^{2}\right)=5-125=-120=(-40) \cdot 3$.
Since -40 is unit in $\mathbb{Z}[\sqrt[3]{5}]_{\mathcal{Q}}$, it follows that

$$
\mathbb{Z}[\sqrt[3]{5}]_{\mathcal{Q}}(\sqrt[3]{5}-5)=\mathbb{Z}[\sqrt[3]{5}]_{\mathcal{Q}} \mathcal{Q}
$$

so \mathcal{Q} is locally principal, as desired. Thus, we see that $\mathbb{Z}[\sqrt[3]{5}]$ is a Dedekind domain as desired.

What about $\mathbb{Z}[\sqrt[3]{19}]$? Calculating the discriminant yields $3^{3} \cdot 19^{2}$. Again, it is easy to see that the prime lying over 19 is just $\sqrt[3]{19}$. But the prime lying over 3 is trickier. We see that the only prime $\mathbb{Q} \in \mathbb{Z}[\sqrt[3]{19}]$ such that $\mathbb{Q} \cap \mathbb{Z}=3 \mathbb{Z}$ is the prime $(\sqrt[3]{19}-19,3)$. Modulo 3 we have

$$
(X-19)^{3}=X-19 \quad(\bmod 3) .
$$

From some work from last time, $(\sqrt[3]{19}-19,3)$ is invertible if and only if the remainder of $X^{3}-19$ modulo $X-19$ is divisble by 3^{2}. We see that

$$
\left(X^{3}-19\right)=(X-19)\left(X^{2}+19 X+19\right)+19^{3}-19
$$

Since

$$
19^{3}-19 \cong-18 \quad(\bmod 9) \cong 0 \quad(\bmod 19)
$$

we see that $(\sqrt[3]{19}-19,3)$ is not invertible.
In fact, we can generalize this to show that if a is a square-free integer and p is a prime, then $\mathbb{Z}[\sqrt[p]{a}]$ is Dedekind if and only if $a^{p}-a \not \equiv 0$ $\left(\bmod p^{2}\right)$. This will be on your homework.

