Recall from last time:

Let A be Dedekind. Let \mathcal{P} be a maximal ideal of A and let α be an integral element of a finite separable extension of the field of fractions of A. Suppose that G is the minimal monic for α over A and that the reduction mod \mathcal{P} of G, which we call \overline{G} factors as

$$\bar{G} = \bar{g}_1^{r_1} \cdots \bar{g}_m^{r_m},$$

with the \bar{g}_i distinct, irreducible, and monic.

Proposition 16.1. With notation as above, if $r_i = 1$ then the prime $A[\alpha](\mathcal{P}, g_i(\alpha))$ is invertible. If $r_i > 1$, then \mathcal{Q}_i is invertible if and only if all the coefficients of the remainder mod g_i of G are not in \mathcal{P}^2 , i.e. if writing

(1)
$$G(x) = q(x)g_i(x) + r(x),$$

we have $r(x) \notin \mathcal{P}^2[x]$.

Proof. We did the $r_i = 1$ part last time. Now, for $r_i > 1$. We may as well work over $A_{\mathcal{P}}[\alpha]$ rather than $A[\alpha]$ we write $A_{\mathcal{P}}\mathcal{P} = A_{\mathcal{P}}\pi$.

Let $\phi : A_{\mathcal{P}}[x] \longrightarrow A_{\mathcal{P}}[\alpha]$ be the natural quotient map obtained by sending x to α . The kernel of this map is $A_{\mathcal{P}}[x]G$. The prime \mathcal{Q}_i in $A_{\mathcal{P}}$ is generated by $(\pi, g_i(\alpha))$, so $\phi^{-1}(\mathcal{Q})$ is generated by $(\pi, g_i(x))$ since G(x) is in the ideal generated by $(\pi, g_i(x))$ (since $g_i(x)$ divides Gmodulo \mathcal{P}). Denote $\phi^{-1}(\mathcal{Q})$ as J. It is easy to see that

$$\dim_{A_{\mathcal{P}}/A_{\mathcal{P}}\mathcal{P}} J/J^2 = 2d$$

where d is the degree of g_i since

$$\{\pi, \pi x, \ldots, \pi x^{d-1}, g_i, g_i x, \ldots, g_i x^{d-1}\}$$

is a basis for J/J^2 as a $A_{\mathcal{P}}/A_{\mathcal{P}}\mathcal{P}$ -module. We see that ϕ induces a map

$$ilde{\phi}: J/J^2 \longrightarrow \mathcal{Q}_i/\mathcal{Q}_i^2$$

which has kernel $A_{\mathcal{P}}[x]G(x) \pmod{J^2}$. From (1), this is generated by the remainder r(x). Since deg $r < \deg g$, we have $r \in J^2$ if and only if $r \in \pi^2 A_{\mathcal{P}}[x]$. Thus, we see that

$$\dim_{A_{\mathcal{P}}/A_{\mathcal{P}}\mathcal{P}}(\mathcal{Q}_i/\mathcal{Q}_i^2) < 2d$$

if and only if $r \notin \pi^2 A_{\mathcal{P}}[x]$. Since

$$\dim_{A_{\mathcal{P}}/A_{\mathcal{P}}\mathcal{P}}(\mathcal{Q}_i/\mathcal{Q}_i^2) = d \dim_{A[\alpha]_{\mathcal{Q}_i}/A_{[\alpha]_{\mathcal{Q}_i}}\mathcal{Q}_i}(\mathcal{Q}_i/\mathcal{Q}_i^2)$$

we thus have

$$\dim_{A_{\mathcal{P}}/A_{\mathcal{P}}\mathcal{P}}(\mathcal{Q}_i/\mathcal{Q}_i^2) = 1$$

if and only if $r \notin \pi^2 A_{\mathcal{P}}[x]$.

How can we tell which primes we have to worry about (by this, I mean those for which some r_i is greater than 1)? We can use something called the discriminant of a finitely generated integral extension of rings B over A. We will work with several formulations, all of which are equivalent. Here's the definition of the discriminant of a polynomial.

Definition 16.2. Let K be a field and let F be the monic polynomial

$$F(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0.$$

Then, writing

$$F(x) = \prod_{i=1}^{n} (x - \alpha_i)$$

where α_i are the roots of F in some algebraic closure of K, the discriminant $\Delta(F)$ is defined to be

$$\Delta(F) = (-1)^{n(n-1)/2} \prod_{i \neq j} (\alpha_i - \alpha_j) = \prod_{i < j} (\alpha_i - \alpha_j)^2.$$

Why is this discriminant useful? Because of the following obvious fact:

 $\Delta(F) \neq 0 \Leftrightarrow F$ does not have multiple roots.

This is clear because an algebraic closure of K is certainly an integral domain.

What happens when we reduce a polynomial modulo a maximal ideal \mathcal{P} in a Dedekind domain A.

Proposition 16.3. Let F be a polynomial in a Dedekind domain A. Let \mathcal{P} be a prime of A and let \overline{F} be the reduction of F mod \mathcal{P} . Let \overline{F} be the reduction of F modulo \mathcal{P} and let $\overline{\Delta}(F)$ be the reduction of $\Delta(F)$ modulo \mathcal{P} . Then, we have $\overline{\Delta}(F) = \Delta(\overline{F})$.

Proof. Let $F = \prod_{i=1}^{n} (X - \alpha_i)$ where the α_i . Let $B = A[\alpha_1, \dots, \alpha_n]$. Then there is a maximal \mathcal{Q} in \mathcal{P} such that $\mathcal{Q} \cap A = \mathcal{P}$. Let ϕ : $B \longrightarrow B/cQ$. Let $h \in (B/\mathcal{Q})[X]$ be the polynomial $\prod_{i=1}^{m} (X - \phi(\alpha_i))$. Now, the *i*-th coefficient of h(x) is $(-1)^{n-i}S_{i+1}(\phi(\alpha_1), \dots, \phi(\alpha_n))$ where S_{i+1} is the i + 1-st elementary symmetric polynomial in *n*-variables. Since ϕ is homomorphism, $(-1)^{n-i}S_{i+1}(\phi(\alpha_1), \dots, \phi(\alpha_n))$ is also the *i*-th coefficient of \overline{F} , so $\overline{F} = h$ and it is clear that

$$\Delta(h) = (-1)^{n(n-1)/2} \prod_{i \neq j} (\phi(\alpha_i) - \phi(\alpha_j)) = \prod_{i < j} (\phi(\alpha_i) - \phi(\alpha_j))^2 = \overline{\Delta}(F).$$

 $\mathbf{2}$

This has the following corollary.

Corollary 16.4. Let A be a Dedekind domain with field of fractions K and let \mathcal{P} be a maximal prime in A and suppose that $A/\mathcal{P} = k$ is a perfect field. Then the reduction \overline{F} of F modulo \mathcal{P} has distinct roots in the algebraic closure of A/\mathcal{P} if and only if $\Delta(F) \notin \mathcal{P}$.