Math 531 Tom Tucker

NOTES FROM CLASS 10/6
Recall from last time:
Let A be Dedekind. Let \mathcal{P} be a maximal ideal of A and let α be an integral element of a finite separable extension of the field of fractions of A. Suppose that G is the minimal monic for α over A and that the reduction $\bmod \mathcal{P}$ of G, which we call \bar{G} factors as

$$
\bar{G}=\bar{g}_{1}^{r_{1}} \cdots \bar{g}_{m}^{r_{m}}
$$

with the \bar{g}_{i} distinct, irreducible, and monic.
Proposition 16.1. With notation as above, if $r_{i}=1$ then the prime $A[\alpha]\left(\mathcal{P}, g_{i}(\alpha)\right)$ is invertible. If $r_{i}>1$, then \mathcal{Q}_{i} is invertible if and only if all the coefficients of the remainder mod g_{i} of G are not in \mathcal{P}^{2}, i.e. if writing

$$
\begin{equation*}
G(x)=q(x) g_{i}(x)+r(x) \tag{1}
\end{equation*}
$$

we have $r(x) \notin \mathcal{P}^{2}[x]$.
Proof. We did the $r_{i}=1$ part last time. Now, for $r_{i}>1$. We may as well work over $A_{\mathcal{P}}[\alpha]$ rather than $A[\alpha]$ we write $A_{\mathcal{P}} \mathcal{P}=A_{\mathcal{P}} \pi$.

Let $\phi: A_{\mathcal{P}}[x] \longrightarrow A_{\mathcal{P}}[\alpha]$ be the natural quotient map obtained by sending x to α. The kernel of this map is $A_{\mathcal{P}}[x] G$. The prime \mathcal{Q}_{i} in $A_{\mathcal{P}}$ is generated by $\left(\pi, g_{i}(\alpha)\right)$, so $\phi^{-1}(\mathcal{Q})$ is generated by $\left(\pi, g_{i}(x)\right)$ since $G(x)$ is in the ideal generated by $\left(\pi, g_{i}(x)\right)$ (since $g_{i}(x)$ divides G modulo \mathcal{P}). Denote $\phi^{-1}(\mathcal{Q})$ as J. It is easy to see that

$$
\operatorname{dim}_{A_{\mathcal{P}} / A_{\mathcal{P}} \mathcal{P}} J / J^{2}=2 d
$$

where d is the degree of g_{i} since

$$
\left\{\pi, \pi x, \ldots, \pi x^{d-1}, g_{i}, g_{i} x, \ldots, g_{i} x^{d-1}\right\}
$$

is a basis for J / J^{2} as a $A_{\mathcal{P}} / A_{\mathcal{P}} \mathcal{P}$-module. We see that ϕ induces a map

$$
\tilde{\phi}: J / J^{2} \longrightarrow \mathcal{Q}_{i} / \mathcal{Q}_{i}^{2}
$$

which has kernel $A_{\mathcal{P}}[x] G(x)\left(\bmod J^{2}\right)$. From (1), this is generated by the remainder $r(x)$. Since $\operatorname{deg} r<\operatorname{deg} g$, we have $r \in J^{2}$ if and only if $r \in \pi^{2} A_{\mathcal{P}}[x]$. Thus, we see that

$$
\operatorname{dim}_{A_{\mathcal{P}} / A_{\mathcal{P}} \mathcal{P}}\left(\mathcal{Q}_{i} / \mathcal{Q}_{i}^{2}\right)<2 d
$$

if and only if $r \notin \pi^{2} A_{\mathcal{P}}[x]$. Since

$$
\operatorname{dim}_{A_{\mathcal{P}} / A_{\mathcal{P}} \mathcal{P}}\left(\mathcal{Q}_{i} / \mathcal{Q}_{i}^{2}\right)=d \operatorname{dim}_{\left.A[\alpha]_{\mathcal{Q}_{i}} / A_{[\alpha]}\right]_{\mathcal{Q}_{i}} \mathcal{Q}_{i}}\left(\mathcal{Q}_{i} / \mathcal{Q}_{i}^{2}\right)
$$

we thus have

$$
\operatorname{dim}_{A_{\mathcal{P}} / A_{\mathcal{P}} \mathcal{P}}\left(\mathcal{Q}_{i} / \mathcal{Q}_{i}^{2}\right)=1
$$

if and only if $r \notin \pi^{2} A_{\mathcal{P}}[x]$.

How can we tell which primes we have to worry about (by this, I mean those for which some r_{i} is greater than 1)? We can use something called the discriminant of a finitely generated integral extension of rings B over A. We will work with several formulations, all of which are equivalent. Here's the definition of the discriminant of a polynomial.
Definition 16.2. Let K be a field and let F be the monic polynomial

$$
F(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} .
$$

Then, writing

$$
F(x)=\prod_{i=1}^{n}\left(x-\alpha_{i}\right)
$$

where α_{i} are the roots of F in some algebraic closure of K, the discriminant $\Delta(F)$ is defined to be

$$
\Delta(F)=(-1)^{n(n-1) / 2} \prod_{i \neq j}\left(\alpha_{i}-\alpha_{j}\right)=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2} .
$$

Why is this discriminant useful? Because of the following obvious fact:

$$
\Delta(F) \neq 0 \Leftrightarrow F \text { does not have multiple roots. }
$$

This is clear because an algebraic closure of K is certainly an integral domain.

What happens when we reduce a polynomial modulo a maximal ideal \mathcal{P} in a Dedekind domain A.
Proposition 16.3. Let F be a polynomial in a Dedekind domain A. Let \mathcal{P} be a prime of A and let \bar{F} be the reduction of $F \bmod \mathcal{P}$. Let \bar{F} be the reduction of F modulo \mathcal{P} and let $\bar{\Delta}(F)$ be the reduction of $\Delta(F)$ modulo \mathcal{P}. Then, we have $\bar{\Delta}(F)=\Delta(\bar{F})$.

Proof. Let $F=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)$ where the α_{i}. Let $B=A\left[\alpha_{1}, \cdots, \alpha_{n}\right]$. Then there is a maximal \mathcal{Q} in \mathcal{P} such that $\mathcal{Q} \cap A=\mathcal{P}$. Let ϕ : $B \longrightarrow B / c Q$. Let $h \in(B / \mathcal{Q})[X]$ be the polynomial $\prod_{i=1}^{m}\left(X-\phi\left(\alpha_{i}\right)\right)$. Now, the i-th coefficient of $h(x)$ is $(-1)^{n-i} S_{i+1}\left(\phi\left(\alpha_{1}\right), \ldots, \phi\left(\alpha_{n}\right)\right)$ where S_{i+1} is the $i+1$-st elelementary symmetric polynomial in n-variables. Since ϕ is homomorphism, $(-1)^{n-i} S_{i+1}\left(\phi\left(\alpha_{1}\right), \ldots, \phi\left(\alpha_{n}\right)\right)$ is also the i-th coefficient of \bar{F}, so $\bar{F}=h$ and it is clear that
$\Delta(h)=(-1)^{n(n-1) / 2} \prod_{i \neq j}\left(\phi\left(\alpha_{i}\right)-\phi\left(\alpha_{j}\right)\right)=\prod_{i<j}\left(\phi\left(\alpha_{i}\right)-\phi\left(\alpha_{j}\right)\right)^{2}=\bar{\Delta}(F)$.

This has the following corollary.
Corollary 16.4. Let A be a Dedekind domain with field of fractions K and let \mathcal{P} be a maximal prime in A and suppose that $A / \mathcal{P}=k$ is a perfect field. Then the reduction \bar{F} of F modulo \mathcal{P} has distinct roots in the algebraic closure of A / \mathcal{P} if and only if $\Delta(F) \notin \mathcal{P}$.

