
Math 531 Tom Tucker
NOTES FROM CLASS 10/6

Recall from last time:
Let A be Dedekind. Let P be a maximal ideal of A and let α be an

integral element of a finite separable extension of the field of fractions
of A. Suppose that G is the minimal monic for α over A and that the
reduction mod P of G, which we call Ḡ factors as

Ḡ = ḡr1
1 · · · ḡrm

m ,

with the ḡi distinct, irreducible, and monic.

Proposition 16.1. With notation as above, if ri = 1 then the prime
A[α](P , gi(α)) is invertible. If ri > 1, then Qi is invertible if and only
if all the coefficients of the remainder mod gi of G are not in P2, i.e.
if writing

(1) G(x) = q(x)gi(x) + r(x),

we have r(x) /∈ P2[x].

Proof. We did the ri = 1 part last time. Now, for ri > 1. We may as
well work over AP [α] rather than A[α] we write APP = APπ.

Let φ : AP [x] −→ AP [α] be the natural quotient map obtained by
sending x to α. The kernel of this map is AP [x]G. The prime Qi

in AP is generated by (π, gi(α)), so φ−1(Q) is generated by (π, gi(x))
since G(x) is in the ideal generated by (π, gi(x)) (since gi(x) divides G
modulo P). Denote φ−1(Q) as J . It is easy to see that

dimAP/APP J/J2 = 2d

where d is the degree of gi since

{π, πx, . . . , πxd−1, gi, gix, . . . , gix
d−1}

is a basis for J/J2 as a AP/APP-module. We see that φ induces a map

φ̃ : J/J2 −→ Qi/Q2
i

which has kernel AP [x]G(x) (mod J2). From (1), this is generated by
the remainder r(x). Since deg r < deg g, we have r ∈ J2 if and only if
r ∈ π2AP [x]. Thus, we see that

dimAP/APP(Qi/Q2
i ) < 2d

if and only if r /∈ π2AP [x]. Since

dimAP/APP(Qi/Q2
i ) = d dimA[α]Qi

/A[α]Qi
Qi

(Qi/Q2
i )

we thus have
dimAP/APP(Qi/Q2

i ) = 1
1



2

if and only if r /∈ π2AP [x].
�

How can we tell which primes we have to worry about (by this, I
mean those for which some ri is greater than 1)? We can use something
called the discriminant of a finitely generated integral extension of rings
B over A. We will work with several formulations, all of which are
equivalent. Here’s the definition of the discriminant of a polynomial.

Definition 16.2. Let K be a field and let F be the monic polynomial

F (x) = xn + an−1x
n−1 + · · ·+ a0.

Then, writing

F (x) =
n∏

i=1

(x− αi)

where αi are the roots of F in some algebraic closure of K, the dis-
criminant ∆(F ) is defined to be

∆(F ) = (−1)n(n−1)/2
∏
i6=j

(αi − αj) =
∏
i<j

(αi − αj)
2.

Why is this discriminant useful? Because of the following obvious
fact:

∆(F ) 6= 0 ⇔ F does not have multiple roots.

This is clear because an algebraic closure of K is certainly an integral
domain.

What happens when we reduce a polynomial modulo a maximal ideal
P in a Dedekind domain A.

Proposition 16.3. Let F be a polynomial in a Dedekind domain A.
Let P be a prime of A and let F̄ be the reduction of F mod P. Let F̄
be the reduction of F modulo P and let ∆(F ) be the reduction of ∆(F )
modulo P. Then, we have ∆(F ) = ∆(F̄ ).

Proof. Let F =
∏n

i=1(X − αi) where the αi. Let B = A[α1, · · · , αn].
Then there is a maximal Q in P such that Q ∩ A = P . Let φ :
B −→ B/cQ. Let h ∈ (B/Q)[X] be the polynomial

∏m
i=1(X − φ(αi)).

Now, the i-th coefficient of h(x) is (−1)n−iSi+1(φ(α1), . . . , φ(αn)) where
Si+1 is the i + 1-st elelementary symmetric polynomial in n-variables.
Since φ is homomorphism, (−1)n−iSi+1(φ(α1), . . . , φ(αn)) is also the
i-th coefficient of F̄ , so F̄ = h and it is clear that

∆(h) = (−1)n(n−1)/2
∏
i6=j

(φ(αi)− φ(αj)) =
∏
i<j

(φ(αi)− φ(αj))
2 = ∆(F ).

�
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This has the following corollary.

Corollary 16.4. Let A be a Dedekind domain with field of fractions
K and let P be a maximal prime in A and suppose that A/P = k is
a perfect field. Then the reduction F̄ of F modulo P has distinct roots
in the algebraic closure of A/P if and only if ∆(F ) /∈ P.


