Math 531 Tom Tucker NOTES FROM CLASS 10/4

Let's begin with the following Lemma, the proof of which is obvious.

Lemma 15.1. Let I be an ideal in Dedekind domain. Write

$$I = \mathcal{Q}_1^{e_1} \cdots \mathbb{Q}_m^{e_m}$$

where the Q_i are distinct primes. Then

$$e_i = \min\{m \mid R_{\mathcal{Q}_i}(\mathcal{Q}_i)^m \subseteq R_{\mathcal{Q}_i}I\}.$$

Proposition 15.2. Let A be Dedekind. Let \mathcal{P} be a maximal ideal of A and let α be an integral element of a finite separable extension of the field of fractions of A. Suppose that G is the minimal monic for α over A and that the reduction mod \mathcal{P} of G, which we call \overline{G} factors as

$$\bar{G} = \bar{g}_1^{r_1} \cdots \bar{g}_m^{r_m}$$

with the \bar{g}_i distinct, irreducible, and monic. Then choosing monic $g_i \in A[x]$ such that $g_i \equiv \bar{g}_i \pmod{\mathcal{P}}$, we have

- (1) $Q_i = A[\alpha](g_i(\alpha), \mathcal{P})$ is a prime for each *i*; and
- (2) r_i is the smallest positive integer such that

$$R_{\mathcal{Q}_i}(\mathcal{Q}_i)^{r_i} \subseteq R_{\mathcal{Q}_i}\mathcal{P}_i$$

Proof. The proof is quite simple. Note that $A[\alpha]$ is isomorphic to A[x]/G(x). We work in the ring $A[\alpha]/\mathcal{P}A[\alpha] \cong A[x]/(G(x), \mathcal{P})$, which is isomorphic to

$$(A/\mathcal{P})/(\bar{G}(x)) \cong \sum_{i=1}^{m} (A/\mathcal{P})[x]/\bar{g}_i(x)^{r_i}$$

Since $\bar{g}_i(x)$ is irreducible in $(A/\mathcal{P})[x]$, we see that

$$(A/\mathcal{P})[x]/\bar{g}_i(x)$$

is a field, so Q_i is prime ideal since

$$A[\alpha]/\mathcal{Q}_i \cong (A/\mathcal{P})[x]/\bar{g}_i(x)$$

Now,

$$A[\alpha]_{\mathcal{Q}_i}/A[\alpha]_{\mathcal{Q}_i}\mathcal{P} \cong (A/\mathcal{P})[x]/\bar{g}_i(x)^{r_i},$$

so r_i is the smallest integer such that

$$g_i(x)^{r_i} \subseteq R_{\mathcal{Q}_i}\mathcal{P}.$$

Corollary 15.3. (Kummer) With notation as above, if $A[\alpha]$ is Dedekind, then

$$A[\alpha]\mathcal{P} = \mathcal{Q}_1^{e_1} \cdots \mathcal{Q}_m^{e_m}.$$

Proof. Immediate from the lemma and proposition above.

We will also want to deal with rings that are not Dedekind domains. Frequently, we will want to take rings of the form $A[\alpha]$ and try to decide whether or not they are in fact Dedekind. Here's a useful fact.

Proposition 15.4. With notation as above, if $r_i = 1$ then the prime $A[\alpha](\mathcal{P}, g_i(\alpha))$ is invertible. If $r_i > 1$, then \mathcal{Q}_i is invertible if and only if all the coefficients of the remainder mod g_i of G are in \mathcal{P}^2 , i.e. if writing

$$G(x) = q(x)g_i(x) + r(x),$$

we have $r(x) \in \mathcal{P}^2[x]$.

Proof. For each j, select a monic polynomial $g_j \in A[x]$ such that $g_j \equiv g_j \pmod{\mathcal{P}}$. Since

$$g_1(x)^{e_1}\cdots g_m(x)^{e_m} \equiv f(x) \pmod{\mathcal{P}}$$

it is clear that

 $\mathbf{2}$

(1)
$$g_1(\alpha)^{e_1} \cdots g_m(\alpha)^{e_m} \in \mathcal{P},$$

since α is a root of f. Furthermore, we know that for $j \neq i$, we must have that $g_i(\alpha)$ and $g_j(\alpha)$ are coprime. Now, suppose that $e_i = 1$ for some i; let $Q_i = A[\alpha](g_i(\alpha), \mathcal{P})$. When we localize at Q_i , all of the $g_j(\alpha)$ for which $j \neq i$ become units. Thus, (1) has the form $g_i(\alpha)u \in \mathcal{P}$ for u a unit, so $g_i(\alpha) \subset A[\alpha]\mathcal{P}$. We know that there exists a $\pi \in A$ such that $A_{\mathcal{P}} = A_{\mathcal{P}}\pi$ since \mathcal{P} is invertible in A. Then

$$A[\alpha]_{\mathcal{Q}_i}(g_i(\alpha), \mathcal{P}) = A[x]_{\mathcal{Q}_i}\pi$$

so \mathcal{Q}_i is invertible.

We'll finish the $r_i > 1$ part next time.