Math 531 Tom Tucker

NOTES FROM CLASS 10/4
Let's begin with the following Lemma, the proof of which is obvious.
Lemma 15.1. Let I be an ideal in Dedekind domain. Write

$$
I=\mathcal{Q}_{1}^{e_{1}} \cdots \mathbb{Q}_{m}^{e_{m}}
$$

where the \mathcal{Q}_{i} are distinct primes. Then

$$
e_{i}=\min \left\{m \mid R_{\mathcal{Q}_{i}}\left(\mathcal{Q}_{i}\right)^{m} \subseteq R_{\mathcal{Q}_{i}} I\right\} .
$$

Proposition 15.2. Let A be Dedekind. Let \mathcal{P} be a maximal ideal of A and let α be an integral element of a finite separable extension of the field of fractions of A. Suppose that G is the minimal monic for α over A and that the reduction mod \mathcal{P} of G, which we call \bar{G} factors as

$$
\bar{G}=\bar{g}_{1}^{r_{1}} \cdots \bar{g}_{m}^{r_{m}}
$$

with the \bar{g}_{i} distinct, irreducible, and monic. Then choosing monic $g_{i} \in$ $A[x]$ such that $g_{i} \equiv \bar{g}_{i}(\bmod \mathcal{P})$, we have
(1) $\mathcal{Q}_{i}=A[\alpha]\left(g_{i}(\alpha), \mathcal{P}\right)$ is a prime for each i; and
(2) r_{i} is the smallest positive integer such that

$$
R_{\mathcal{Q}_{i}}\left(\mathcal{Q}_{i}\right)^{r_{i}} \subseteq R_{\mathcal{Q}_{i}} \mathcal{P} .
$$

Proof. The proof is quite simple. Note that $A[\alpha]$ is isomorphic to $A[x] / G(x)$. We work in the $\operatorname{ring} A[\alpha] / \mathcal{P} A[\alpha] \cong A[x] /(G(x), \mathcal{P})$, which is isomorphic to

$$
(A / \mathcal{P}) /(\bar{G}(x)) \cong \sum_{i=1}^{m}(A / \mathcal{P})[x] / \bar{g}_{i}(x)^{r_{i}} .
$$

Since $\bar{g}_{i}(x)$ is irreducible in $\left.(A / \mathcal{P})[x]\right)$, we see that

$$
(A / \mathcal{P})[x] / \bar{g}_{i}(x)
$$

is a field, so \mathcal{Q}_{i} is prime ideal since

$$
A[\alpha] / \mathcal{Q}_{i} \cong(A / \mathcal{P})[x] / \bar{g}_{i}(x) .
$$

Now,

$$
A[\alpha]_{\mathcal{Q}_{i}} / A[\alpha]_{\mathcal{Q}_{i}} \mathcal{P} \cong(A / \mathcal{P})[x] / \bar{g}_{i}(x)^{r_{i}},
$$

so r_{i} is the smallest integer such that

$$
g_{i}(x)^{r_{i}} \subseteq R_{\mathcal{Q}_{i}} \mathcal{P} .
$$

Corollary 15.3. (Kummer) With notation as above, if $A[\alpha]$ is Dedekind, then

$$
A[\alpha] \mathcal{P}=\underset{1}{\mathcal{Q}_{1}^{e_{1}} \cdots \mathcal{Q}_{m}^{e_{m}} .}
$$

Proof. Immediate from the lemma and proposition above.
We will also want to deal with rings that are not Dedekind domains. Frequently, we will want to take rings of the form $A[\alpha]$ and try to decide whether or not they are in fact Dedekind. Here's a useful fact.

Proposition 15.4. With notation as above, if $r_{i}=1$ then the prime $A[\alpha]\left(\mathcal{P}, g_{i}(\alpha)\right)$ is invertible. If $r_{i}>1$, then \mathcal{Q}_{i} is invertible if and only if all the coefficients of the remainder mod g_{i} of G are in \mathcal{P}^{2}, i.e. if writing

$$
G(x)=q(x) g_{i}(x)+r(x),
$$

we have $r(x) \in \mathcal{P}^{2}[x]$.
Proof. For each j, select a monic polynomial $g_{j} \in A[x]$ such that $g_{j} \equiv g_{j}$ $(\bmod \mathcal{P})$. Since

$$
g_{1}(x)^{e_{1}} \cdots g_{m}(x)^{e_{m}} \equiv f(x) \quad(\bmod \mathcal{P})
$$

it is clear that

$$
\begin{equation*}
g_{1}(\alpha)^{e_{1}} \cdots g_{m}(\alpha)^{e_{m}} \in \mathcal{P} \tag{1}
\end{equation*}
$$

since α is a root of f. Furthermore, we know that for $j \neq i$, we must have that $g_{i}(\alpha)$ and $g_{j}(\alpha)$ are coprime. Now, suppose that $e_{i}=1$ for some i; let $\mathcal{Q}_{i}=A[\alpha]\left(g_{i}(\alpha), \mathcal{P}\right)$. When we localize at \mathcal{Q}_{i}, all of the $g_{j}(\alpha)$ for which $j \neq i$ become units. Thus, (1) has the form $g_{i}(\alpha) u \in \mathcal{P}$ for u a unit, so $g_{i}(\alpha) \subset A[\alpha] \mathcal{P}$. We know that there exists a $\pi \in A$ such that $A_{\mathcal{P}}=A_{\mathcal{P}} \pi$ since \mathcal{P} is invertible in A. Then

$$
A[\alpha]_{\mathcal{Q}_{i}}\left(g_{i}(\alpha), \mathcal{P}\right)=A[x]_{\mathcal{Q}_{i}} \pi
$$

so \mathcal{Q}_{i} is invertible.
We'll finish the $r_{i}>1$ part next time.

