Addendum to Kelley’s General Topology
I. Section on Completion of a Uniform Space

Theorem 1. Let (X, 4) be a uniform space. Suppose that we have a dense
subset A of X, such that every Cauchy net in A converges to a point of X.
Then X is complete — i.e., every Cauchy net in X converges to some point
of X.

Proof Let (z,),ep be a Cauchy net in X. Let E={(n,U) € Dx U :i,j>
n in D implies (x;,x;) € U. E is a subset of the product directed set D x 4,
where U is regarded as being a directed set ordered by reverse inclusion —
this is the partial order on D x 4 such that (n,U) > (n/,U’) iff n > n’ in
D and U’ C U. The statement that "the net (z,)nep is a Cauchy net” in
(X, 1) is equivalent to saying that, ”for every U € i, there exists n € D such
that (n,U) is an element of E”. It follows easily that F is a directed subset
of D x 4, with the induced order. [Prove this!]

For each (n,U) € E, we have that U(x,) is a neighborhood of z,, in X. Since
Ais a dense subset of X, ANU(x,,) is non-empty; therefore we can choose an
element y(, 1y € ANU(z,). Choose such an element y(, iy € AN U(x,) for
every (n,U) € E. (We are here using the Axiom of Choice. It’s not difficult
to alter our construction so as to avoid using the Axiom of Choice — but we’ll
avoid complicating our construction by not making this embellishment.)

Then (Yn,1))(n,v)eE 15 a net in the subset A of X.

If (n,U") > (n,U) and (n”,U”) > (n,U) € EthenU',U” C U, whence(yq, 7y, Tn) €
U' c U, and similarly (y oy, 2n) € U C U. Since (n,U) € E and

n',n” > nin D, we have that (x,/,x,») € U. Therefore, (yu vy, Yo v7)) €
UoUoU!. Therefore (n',U’), (n”,U”) > (n,U) in E implies (Y, vy, Ynr,v7) €
UoUoU™'. (n,U) € E being arbitrary, it follows that the net (y(u1)) m.v)er

is a Cauchy net in A. By hypothesis, we have that the net (yu,u))muv)ce

converges to some point z in X. We claim that the Cauchy net (x,)nep
converges to the same point z in X.

For every U € U, since the net (Y, vy)(n,v)er converges toxin X, I(n,U) € E
such that (n',U’) > (n,U) in E implies

(y(n’,U’)Vr) eU
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For every (n/,U’) > (n,U) in E, we have that yq, vy € ANU'(z),). Therefore

(y(n’,U’)aIn’> celU' cU

Therefore

(T, 2) €U0 U

all n’ > n in D. Therefore the net (z,),ep converges to z in X. QED.

Definition 2. Let (X, 4l) be a uniform space, and let U € 4 be an entourage
in the uniformity ${. Two Cauchy nets (z,)nep and (Ym)mer are U-close iff
the net (2, Ym ) mm)epx e is eventually in U — that is, iff 3n € D and m € E
such that ¢ > n in D and j > m in E implies that (i,j) € U. The two nets
are equivalent iff they are U-close, for all U € 4.

Lemma 3. If (2,)nep and (Ym)mer are equivalent Cauchy nets in the uni-
form space (X, 1), then

1. The set of points to which each of the nets (x,)n,ep and (Y )mer con-
verges is the same.

2. If f: (X, ) — (Y,9) is a uniformly continuous function, then the
Cauchy nets (f(x,))nep and (f(Ym))mer in the uniform space (Y, )
are equivalent.

Proof: Easy.

Corollary 1.1. Let (X,4) be a uniform space. Suppose that we have a
dense subset A of X, such that every Cauchy net in A is equivalent to a
Cauchy net in A that converges to a point of X. Then X is complete.

Proof Let (z,,),ep be a Cauchy net in A. Then by hypothesis, there exists
(Ym)mer a Cauchy net in A that is equivalent to (x,)nep such that (y,)mer
converges to some point y in X. Hence by the first conclusion of Lemma 3 we
have that (z,)nep converges to y in X. (z,)nep being an arbitrary Cauchy
net in A, by Theorem 1, we have that the uniform sapce X is complete.
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Lemma 4. Let (z,)n,ep be a Cauchy net in the uniform space (X,4l). For
ne€ D,let A, ={x;:i >nin D}. Let A = {4, : n € D}. Regard A as
a directed set by reverse inclusion. For every A € 2, let y4 be an element
in A. Then the net (y4)aeq in X is Cauchy and is equivalent to the Cauchy

net (mn)neD-

Proof Let U € 4. Since the net (x,,),ep is Cauchy, In € D such that i,7 > n
in D implies (z;,x;) € U. Therefore A, xA, CU. If B,C € %and B,C > A
in A, then yp € B C A and yo € C C A, whence (yg,yc) € Ax A CU.
Thus, B,C > A in 2 implies (yp,yc) € U. U € U being arbitrary, we have
that the net (y4)aen in the uniform space (X, ) is Cauchy.

Also, if U € U then as above choose n € D such that 7,7 > n in D implies
that (x;,x;) € U. Then A, as above we have that A,, € 2, and, for any ¢ > n
in D and any B > A, in %, we have yp € B C A,,, whence ygp = z;, 3j > n
in D. Hence (z;,yp) = (v;,z;) € U, alli > nin D and all B > A, in 2.
Therefore the Cauchy nets (z,)n,ep and (yp)peu are equivalent, as asserted.

Proposition 5. Let X be a uniform space. Then there exists a set S of of
Cauchy nets in X such that every Cauchy net in X is equivalent to a Cauchy
net in S.

Proof. Let S be the collection of all Cauchy nets (yg)pes in X such that the
directed set 2 is a set of subsets of X ordered by reverse inclusion and such
that yg € B, all B € 2. Then the collection S is indeed a set, and, by the
preceding Lemma, every Cauchy net in the uniform space X is equivalent to
one in the set S.

Theorem 6. Let (A, ) be an arbitrary uniform space. Then there exists a
complete uniform space containing A as a dense uniform subspace.

Proof We construct an isomorphism of uniform spaces ¢ : (4, 4) — (X, V)
from (A,4) onto a dense uniform subspace of a complete uniform space
(X,%0). By Proposition 5, there is a set S of Cauchy nets in A such that
every Cauchy net in A is equivalent to one in S. {0} is a directed set with the
trivial ordering. For every a € A, let y, be the net indexed by the directed
set {0} that assigns the value a to 0. Then y, is a Cauchy net in A, and
converges to the element a € A, all a € A. Let X be the set consisting of the
union of {y, : a € A} and the set S. Then X is a set of Cauchy nets in A.

For every U € i, let Uy be the set of all pairs (N, N') € X x X such that
the Cauchy nets N and N’ in (A, ) are U-close. If V' € 4l is symmetric then



Vo € X x X is symmetric; and if U,V € 4 are such that V oV C U, then
Voo Vo C Uy [Proof: Excercise|. It follows readily that {Uy : U € U} is a
base for a uniformity U on X. Define 1 : A — X by t(a) = y,, all a € A.

If 2 = (an)nep is a Cauchy net in (A, ) in the set S, then we claim that the
net (v(an))nep converges to the element x = (a,)nep in the uniform space
(X, 7).

We must show that, for every U € i, In € D such that ¢ > n in D implies
that (c(a;),z) € p. It is equivalent to say that the Cauchy nets ¢(a;) and
(an)nep in (A, L) are U-close.

Since the net (a,)nep in the uniform space (X, 4l) is Cauchy, for every U € 4
there exists n = n(U) € D such that 4, j > n in D implies (a;,a;) € U. The
indexing directed set of the net ¢(a;) is {0}. Therefore to show that ¢(a;) and
(@n)nep are U-close we must show that there exists n € D such that j > n
in D implies that (a;,a;) € U. Taking n = n(U) as above, we therefore have
that, for ¢ > n in D the nets ¢(a;) and (a,)nep are indeed U-close, since for
j >n (ai,aj) eU.

Therefore we have shown that, for every Cauchy net (a,)nep in S, the net
t(ap)nep converges in X. By Corollary 1.1, to complete the proof of the
Theorem, it suffices to prove that ((A) is dense in X. But if z € X, then
either # € t(A) or x € S. In the latter case, we have that * = (a,)nep, a
Cauchy net in A that is in the set S. But then, in the preceding paragraph,
we constructed a net in ¢(A) that converges to  in X. Therefore ¢(A) is dense
in X.

Theorem 7. (Version of Kelley, Theorem 26, pg. 195.) Let A be a
dense subset of the uniform sapce (X,4l); regard (as always) A as being a
uniform space with the induced uniformity 4, from (X, 4). Suppose that

[ (A Uy) — (V,0)

is a uniformly continuous function from A into a complete Hausdorff uniform
spave (Y,20). Then 3! continuous extension

of f. And f is uniformly continuous.

Proof If v € X, then since z € A, there is a net (2;);cp in A that converges to
xin X. Hence the net (x;);ep in A is Cauchy. Since f is uniformly continuous,

4



the net f(zi)icp in Y is Cauchy. Since Y is complete and Hausdorff, the
Cauchy net f(x;);ep in Y converges to a unique element of Y7; call it f(x).

This definition of f(z) is independent of the net (z;);cp in A chosen con-
verging to x in X: Suppose (2';);ep is another net in A converging to the
same element z in X. Then since the nets (x;);ep and (2';);cp converge
to the same element x € X, these Cauchy nets in A are equivalent Since
f: A — Y is uniformly continuous, the nets f(z;)iep and f(2';)jer in
X are equivalent Cauchy nets, and therefore converge to the same element
y € Y. Therefore we have a well-defined function f: X — Y.

Next we show that if W € U then there is a U € U such that foUCWof
— this is equivalent to saying that f is uniformly continuous, completing the
proof.

Choose V' € U closed and symmetric such that V oV C W, and choose
U € U open and symmetric such that f(U(a)) C V(f(a)) for all @ € A (can
do, since f : A — Y is uniformly continuous). If (z,u) € U and f(x) =
and f(u) = v then U(2z)NU (u) is open (and non-empty since it contains both
x and u). Since A is dense in X, 3z € ANU(z) N U(u). Then x,u € U(z).
Therefore y = f(z) € f(U(z)) ) (the latter meaning the closure of f(U(z))).
[Proof: z € U(z). Since y = f(x), there is a net (r;);ep in A converging to
x in X such that the net (f(z;))iep converges to y in Y. U(z) is an open set
in X containing z; therefore the net (z;);cp is eventually in U(z). Therefore
the net (f(z;))iep is eventually in f(U(z)). Since f(z;);ep converges to y in
Y, we have that y € f(U(2)).] Similarly, v = f(u) € f(U(2)).

So y,v € f(U(z)) C V(f(2)) [This last inclusion since f(U(z)) C V(f(2)),
since z € A, and f(U(a)) C V(f(a)), for all a € A/]

Therefore y,v € V(f(2)) = V(f(2)), since V is a closed entourage in Y.
Therefore (y,v) € VoV < W. Therefore indeed if (z,u) € U then
(f(z), f(u)) € W, as asserted, whence f is uniformly continuous.

IT. Interpretaion of part of Kelley’s Chapter on Function Spaces

Let X be a set and let (Y, ) be a uniform space. Then Y¥ has the product
uniformity, since Y X = [I,cx Y- This is also called the uniformity of point-
wise convergence. The function e, : YX — Y, evaluation at z, is the pro-
jection 7, : [[,cx ¥ — Y onto the z’th coordinate — that is, e, : Y* — X
is the function, e,(f) = f(z), all z € X.
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The uniformity of pointwise convergence can be characterized as being the
coarsest uniformity on the set YX rendering the evaluation map e, : YX —
X uniformly continuous for all x € X. (Note that this observation is a special
case of the more general observation that we made when we discussed the

product uniformity on ] . Y, where Y, is a uniform space, for all z € X.)

A subbase for the uniformity of pointwise convergence on YX are the en-
tourages Vi for all x € X and all U € Y, where

Vew ={(f.9) €Y x Y™ : (f(x),9(x)) € U}.

A net of functions (f,)nep in YX converges to a function f in Y¥ for the
topology of pointwise convergence iff the net in Y (f,(z)).ep converges to
f(x) €Y for all x € X — [which it is why this topology on Y is called the
topology of pointwise convergence.|

And a net (f,)nep of functions from X into Y is Cauchy for the uniformity
of pointwise convergence iff the net in the uniform space Y (f,(2))nep is
Cauchy, for every x in X.

Again, if X is a set and (Y,4) a uniform space, than a finer uniformity
on the set YX is the uniformity of uniform convergence. For each U € l,
let Uy = {(f,9) € YX xY* : (f(x),9(x)) € Uforall x € X}. Thus,
Uy = NgexVuu, and in particular Uy C V,py, all U € U, all z € X.

Then [prove!| for U,V € 4

1. (UyoVy) C (UoV)o,
2. 0CV =U, CW,
3. (UNV)g=UyNV,
4. (Up)~' = (U 1), and
5. Ayx C U.

It follows that Uy = {Uy : U € U} is the base for a uniformity on Y, called
the uniformity of uniform convergence.

Recall: If Z is any set and ‘B is any collection of subsets of Z x Z then B
is the base for a uniquely determined uniformity on Z iff
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.UeB = JVePBsuchthat VoV CU,
22.0,VeB= W ecBsuchthat WCcUNV,
3. UeB =3IV eBsuchthat V! CU

4. UeB= Ay CU.

To verify the first of these conditions for y: If U € i, choose V' € il such
that VoV C U. Then VooV, C (Vo V), C U.

Since Uy = NgexVa,u for all U € YU, we have that the uniformity of uniform
convergence is finer than the uniformity of pointwise convergence.

The topology of the uniformity of uniform convergence is called the topology
of uniform convergence; it depends on the uniformity 4 of Y, not just the
topology of Y. [On the other hand, the topology of pointwise convergence
on Y depends only on the topology of Y; and of course makes sense when
Y is just a topological space, not a uniform space.|

Theorem. If X is a topological space and (Y,4l) is a uniform space, then
the set € of all continuous functions f : X — Y from X into Y is closed in
YX for the topology of uniform convergence.

Note: It is equivalent to say that, if D is a directed set and if f,, : X — Y
is a continuous function from X into Y for all n € D, and if the net (f,,)nep
converges to a function f € Y for the topology of uniform convergence
[Equivalent terminology: "and if the net (f,)nep of continuous functions
from X into Y converges uniformly to a function f : X — Y], then the
function f : X — Y is continuous.

Proof. For any zy, € X, we show that f is continuous at xy. To show this,
we must show that, for every U € i, there exists a neighborhood V' of z( in

X such that f(V) C U(f(x0)).

Since (f,)nep converges uniformly to f in YX, we know that IN € D such
that

(i) (fi(z), f(x)) € U, foralli > N in D and all z € X.

In particular,

(i) (fn(z), f(x)) € U, for all z € X.



Since fy : X — Y is continuous, it is continuous at xy. Therefore there
exists a neighborhood V' of z in X such that fy(V) C U(fn(x0)). That is,
we have that

(ii) (fn(v), fn(zo)) € U, for all v e V.

Equation (i’) hold for all x € X, and in particular for all v € V:

(ili) (fn(v), f(v)) € U, for allv e V.

Since z € V, (iil) implies

(iv) (fw(20), f(z0)) € U.

If U € il is symmetric, then (ii), (iii) and (iv) imply that

(f(v), f(zo)) €eUoUoU forallve V.

[(iii) says that “f(v) and fy(v) are U-close”; (ii) says that “fy(v) and fy(z0)
are U-close”; and (iv) says that “fx(x¢) and f(xg) are U-close”].

Thus, for every symmetric entourage U € 4, we’ve found a neighborhood V'
of x¢ in X such that

fWV)yc(UoUoU)(f(xo))-

Therefore f : X — Y is continuous at xy. This being the case for every
o € X, we have that f: X — Y is continuous.

Example. Let f, : [1,00) — R be the continuous function, f,(x) = ﬁ,

x > 1. Then the sequence of functions (f,),>1 converges pointwise to the
function f: X — Y, where

f(aﬁ)—{l’ "

0, x>1,
a function that is not continuous.

Thus, to ensure continuity for the limit of a net of continuous functions from a
topological space to a uniform space, we need to know that the net converges
uniformly, not merely that it converges pointwise.

Note: If X is a set and Y is a pseudometric space, and if (f,),ep is a
net of functions from the set X into the pseudometric space (Y,d), and if
f: X — Y is a function, then the net (f,),ep converges uniformly to f iff



for every € > 0,3N = N(e) € D such that

d(fu(z), f(x)) < efor all n > N and for all z € X.

The net (f,)nep converges pointwise to f iff for every x € X and every
€ >0,dN = N(z,¢) € D such that

d(fu(z), f(x)) < eforalln > N

Note also: If X is a set and (Y, 4l) is a uniform space, then a net of functions
fn: X — Y, n e Dis Cauchy for the uniformity of pointwise convergence
iff the net (f,.(x))nep in the uniform space (Y,4) is a Cauchy net, for all
x € X iff for every x € X and every U € 4, AN = N(x,U) € D such that
i,j > N in D implies (f;(x), f;(x)) € U.

The net of functions f, : X — Y, n € D is Cauchy for the uniformity of
uniform convergence iff for every U € I, AN = N(U) € D such that i,j > N
in D implies (fi(x), fj(x)) € U for all z € X.



