
Addendum to Kelley’s General Topology

I. Section on Completion of a Uniform Space

Theorem 1. Let (X,U) be a uniform space. Suppose that we have a dense
subset A of X, such that every Cauchy net in A converges to a point of X.
Then X is complete – i.e., every Cauchy net in X converges to some point
of X.

Proof Let (xn)n∈D be a Cauchy net in X. Let E = {(n, U) ∈ D × U : i, j ≥
n in D implies (xi, xj) ∈ U . E is a subset of the product directed set D×U,
where U is regarded as being a directed set ordered by reverse inclusion –
this is the partial order on D × U such that (n, U) ≥ (n′, U ′) iff n ≥ n′ in
D and U ′ ⊂ U . The statement that ”the net (xn)n∈D is a Cauchy net” in
(X,U) is equivalent to saying that, ”for every U ∈ U, there exists n ∈ D such
that (n, U) is an element of E”. It follows easily that E is a directed subset
of D × U, with the induced order. [Prove this!]

For each (n, U) ∈ E, we have that U(xn) is a neighborhood of xn in X. Since
A is a dense subset of X, A∩U(xn) is non-empty; therefore we can choose an
element y(n,U) ∈ A ∩ U(xn). Choose such an element y(n,U) ∈ A ∩ U(xn) for
every (n, U) ∈ E. (We are here using the Axiom of Choice. It’s not difficult
to alter our construction so as to avoid using the Axiom of Choice – but we’ll
avoid complicating our construction by not making this embellishment.)

Then (y(n,U))(n,U)∈E is a net in the subset A of X.

If (n′, U ′) ≥ (n, U) and (n”, U”) ≥ (n, U) ∈ E then U ′, U” ⊂ U , whence(y(n′,U ′), xn′) ∈
U ′ ⊂ U , and similarly (y(n”,U”), xn”) ∈ U” ⊂ U . Since (n, U) ∈ E and
n′, n” ≥ n in D, we have that (xn′ , xn”) ∈ U . Therefore, (y(n′,U ′), y(n”,U”)) ∈
U◦U◦U−1. Therefore (n′, U ′), (n”, U”) ≥ (n, U) in E implies (y(n′,U ′), yn”,U”) ∈
U ◦U ◦U−1. (n, U) ∈ E being arbitrary, it follows that the net (y(n,U))(n,U)∈E

is a Cauchy net in A. By hypothesis, we have that the net (y(n,U))(n,U)∈E

converges to some point x in X. We claim that the Cauchy net (xn)n∈D
converges to the same point x in X.

For every U ∈ U, since the net (y(n,V ))(n,V )∈E converges to x inX, ∃(n, U) ∈ E

such that (n′, U ′) ≥ (n, U) in E implies

(y(n′,U ′), x) ∈ U
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.

For every (n′, U ′) ≥ (n, U) in E, we have that y(n′,U ′) ∈ A∩U ′(x′
n). Therefore

(y(n′,U ′), xn′) ∈ U ′ ⊂ U

.

Therefore

(xn′ , x) ∈ U−1 ◦ U

,

all n′ ≥ n in D. Therefore the net (xn)n∈D converges to x in X. QED.

Definition 2. Let (X,U) be a uniform space, and let U ∈ U be an entourage
in the uniformity U. Two Cauchy nets (xn)n∈D and (ym)m∈E are U-close iff
the net (xn, ym)(n,m)∈D×E is eventually in U — that is, iff ∃n ∈ D and m ∈ E

such that i ≥ n in D and j ≥ m in E implies that (i, j) ∈ U . The two nets
are equivalent iff they are U -close, for all U ∈ U.

Lemma 3. If (xn)n∈D and (ym)m∈E are equivalent Cauchy nets in the uni-
form space (X,U), then

1. The set of points to which each of the nets (xn)n∈D and (ym)m∈E con-
verges is the same.

2. If f : (X,U) −→ (Y,V) is a uniformly continuous function, then the
Cauchy nets (f(xn))n∈D and (f(ym))m∈E in the uniform space (Y,V)
are equivalent.

Proof: Easy.

Corollary 1.1. Let (X,U) be a uniform space. Suppose that we have a
dense subset A of X, such that every Cauchy net in A is equivalent to a
Cauchy net in A that converges to a point of X. Then X is complete.

Proof Let (xn)n∈D be a Cauchy net in A. Then by hypothesis, there exists
(ym)m∈E a Cauchy net in A that is equivalent to (xn)n∈D such that (ym)m∈E

converges to some point y in X. Hence by the first conclusion of Lemma 3 we
have that (xn)n∈D converges to y in X. (xn)n∈D being an arbitrary Cauchy
net in A, by Theorem 1, we have that the uniform sapce X is complete.
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Lemma 4. Let (xn)n∈D be a Cauchy net in the uniform space (X,U). For
n ∈ D, let An = {xi : i ≥ n in D}. Let A = {An : n ∈ D}. Regard A as
a directed set by reverse inclusion. For every A ∈ A, let yA be an element
in A. Then the net (yA)A∈A in X is Cauchy and is equivalent to the Cauchy
net (xn)n∈D.

Proof Let U ∈ U. Since the net (xn)n∈D is Cauchy, ∃n ∈ D such that i, j ≥ n

in D implies (xi, xj) ∈ U . Therefore An×An ⊂ U . If B,C ∈ A and B,C ≥ A

in A, then yB ∈ B ⊂ A and yC ∈ C ⊂ A, whence (yB, yC) ∈ A × A ⊂ U .
Thus, B,C ≥ A in A implies (yB, yC) ∈ U . U ∈ U being arbitrary, we have
that the net (yA)A∈A in the uniform space (X,U) is Cauchy.

Also, if U ∈ U then as above choose n ∈ D such that i, j ≥ n in D implies
that (xi, xj) ∈ U . Then An as above we have that An ∈ A, and, for any i ≥ n

in D and any B ≥ An in A, we have yB ∈ B ⊂ An, whence yB = xj, ∃j ≥ n

in D. Hence (xi, yB) = (xi, xj) ∈ U , all i ≥ n in D and all B ≥ An in A.
Therefore the Cauchy nets (xn)n∈D and (yB)B∈A are equivalent, as asserted.

Proposition 5. Let X be a uniform space. Then there exists a set S of of
Cauchy nets in X such that every Cauchy net in X is equivalent to a Cauchy
net in S.

Proof. Let S be the collection of all Cauchy nets (yB)B∈A in X such that the
directed set A is a set of subsets of X ordered by reverse inclusion and such
that yB ∈ B, all B ∈ A. Then the collection S is indeed a set, and, by the
preceding Lemma, every Cauchy net in the uniform space X is equivalent to
one in the set S.

Theorem 6. Let (A,U) be an arbitrary uniform space. Then there exists a
complete uniform space containing A as a dense uniform subspace.

Proof We construct an isomorphism of uniform spaces ι : (A,U) −→ (X,V)
from (A,U) onto a dense uniform subspace of a complete uniform space
(X,V). By Proposition 5, there is a set S of Cauchy nets in A such that
every Cauchy net in A is equivalent to one in S. {0} is a directed set with the
trivial ordering. For every a ∈ A, let ya be the net indexed by the directed
set {0} that assigns the value a to 0. Then ya is a Cauchy net in A, and
converges to the element a ∈ A, all a ∈ A. Let X be the set consisting of the
union of {ya : a ∈ A} and the set S. Then X is a set of Cauchy nets in A.

For every U ∈ U, let U0 be the set of all pairs (N,N ′) ∈ X × X such that
the Cauchy nets N and N ′ in (A,U) are U -close. If V ∈ U is symmetric then
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V0 ⊂ X × X is symmetric; and if U, V ∈ U are such that V ◦ V ⊂ U , then
V0 ◦ V0 ⊂ U0 [Proof: Excercise]. It follows readily that {U0 : U ∈ U} is a
base for a uniformity V on X. Define ι : A −→ X by ι(a) = ya, all a ∈ A.

If x = (an)n∈D is a Cauchy net in (A,U) in the set S, then we claim that the
net (ι(an))n∈D converges to the element x = (an)n∈D in the uniform space
(X,V).

We must show that, for every U ∈ U, ∃n ∈ D such that i ≥ n in D implies
that (ι(ai), x) ∈ U0. It is equivalent to say that the Cauchy nets ι(ai) and
(an)n∈D in (A,U) are U -close.

Since the net (an)n∈D in the uniform space (X,U) is Cauchy, for every U ∈ U

there exists n = n(U) ∈ D such that i, j ≥ n in D implies (ai, aj) ∈ U . The
indexing directed set of the net ι(ai) is {0}. Therefore to show that ι(ai) and
(an)n∈D are U -close we must show that there exists n ∈ D such that j ≥ n

in D implies that (ai, aj) ∈ U . Taking n = n(U) as above, we therefore have
that, for i ≥ n in D the nets ι(ai) and (an)n∈D are indeed U -close, since for
j ≥ n (ai, aj) ∈ U .

Therefore we have shown that, for every Cauchy net (an)n∈D in S, the net
ι(an)n∈D converges in X. By Corollary 1.1, to complete the proof of the
Theorem, it suffices to prove that ι(A) is dense in X. But if x ∈ X, then
either x ∈ ι(A) or x ∈ S. In the latter case, we have that x = (an)n∈D, a
Cauchy net in A that is in the set S. But then, in the preceding paragraph,
we constructed a net in ι(A) that converges to x in X. Therefore ι(A) is dense
in X.

Theorem 7. (Version of Kelley, Theorem 26, pg. 195.) Let A be a
dense subset of the uniform sapce (X,U); regard (as always) A as being a
uniform space with the induced uniformity UA from (X,U). Suppose that

f : (A,UA) −→ (Y,V)

is a uniformly continuous function from A into a complete Hausdorff uniform
spave (Y,V). Then ∃! continuous extension

f : (X,U) −→ (Y,V)

of f . And f is uniformly continuous.

Proof If x ∈ X, then since x ∈ A, there is a net (xi)i∈D in A that converges to
x inX. Hence the net (xi)i∈D in A is Cauchy. Since f is uniformly continuous,
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the net f(xi)i∈D in Y is Cauchy. Since Y is complete and Hausdorff, the
Cauchy net f(xi)i∈D in Y converges to a unique element of Y ; call it f(x).

This definition of f(x) is independent of the net (xi)i∈D in A chosen con-
verging to x in X: Suppose (x′

j)j∈E is another net in A converging to the
same element x in X. Then since the nets (xi)i∈D and (x′

j)j∈E converge
to the same element x ∈ X, these Cauchy nets in A are equivalent. Since
f : A −→ Y is uniformly continuous, the nets f(xi)i∈D and f(x′

j)j∈E in
X are equivalent Cauchy nets, and therefore converge to the same element
y ∈ Y . Therefore we have a well-defined function f : X −→ Y .

Next we show that if W ∈ V then there is a U ∈ U such that f ◦U ⊂ W ◦ f
– this is equivalent to saying that f is uniformly continuous, completing the
proof.

Choose V ∈ V closed and symmetric such that V ◦ V ⊂ W , and choose
U ∈ U open and symmetric such that f(U(a)) ⊂ V (f(a)) for all a ∈ A (can
do, since f : A −→ Y is uniformly continuous). If (x, u) ∈ U and f(x) = y

and f(u) = v then U(x)∩U(u) is open (and non-empty since it contains both
x and u). Since A is dense in X, ∃z ∈ A ∩ U(x) ∩ U(u). Then x, u ∈ U(z).
Therefore y = f(x) ∈ f(U(z)) (the latter meaning the closure of f(U(z))).
[Proof: x ∈ U(z). Since y = f(x), there is a net (xi)i∈D in A converging to
x in X such that the net (f(xi))i∈D converges to y in Y . U(z) is an open set
in X containing x; therefore the net (xi)i∈D is eventually in U(z). Therefore
the net (f(xi))i∈D is eventually in f(U(z)). Since f(xi)i∈D converges to y in
Y , we have that y ∈ f(U(z)).] Similarly, v = f(u) ∈ f(U(z)).

So y, v ∈ f(U(z)) ⊂ V (f(z)) [This last inclusion since f(U(z)) ⊂ V (f(z)),
since z ∈ A, and f(U(a)) ⊂ V (f(a)), for all a ∈ A.]

Therefore y, v ∈ V (f(z)) = V (f(z)), since V is a closed entourage in Y .
Therefore (y, v) ∈ V ◦ V ⊂ W . Therefore indeed if (x, u) ∈ U then
(f(x), f(u)) ∈ W , as asserted, whence f is uniformly continuous.

II. Interpretaion of part of Kelley’s Chapter on Function Spaces

Let X be a set and let (Y,U) be a uniform space. Then Y X has the product

uniformity, since Y X =
∏

x∈X Y . This is also called the uniformity of point-

wise convergence. The function ex : Y X −→ Y , evaluation at x, is the pro-
jection πx :

∏

x∈X Y −→ Y onto the x’th coordinate – that is, ex : Y X −→ X

is the function, ex(f) = f(x), all x ∈ X.
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The uniformity of pointwise convergence can be characterized as being the
coarsest uniformity on the set Y X rendering the evaluation map ex : Y X −→
X uniformly continuous for all x ∈ X. (Note that this observation is a special
case of the more general observation that we made when we discussed the
product uniformity on

∏

x∈X Yx, where Yx is a uniform space, for all x ∈ X.)

A subbase for the uniformity of pointwise convergence on Y X are the en-
tourages Vx,U for all x ∈ X and all U ∈ U, where

Vx,U = {(f, g) ∈ Y X × Y X : (f(x), g(x)) ∈ U}.

A net of functions (fn)n∈D in Y X converges to a function f in Y X for the
topology of pointwise convergence iff the net in Y (fn(x))n∈D converges to
f(x) ∈ Y for all x ∈ X – [which it is why this topology on Y X is called the

topology of pointwise convergence.]

And a net (fn)n∈D of functions from X into Y is Cauchy for the uniformity
of pointwise convergence iff the net in the uniform space Y (fn(x))n∈D is
Cauchy, for every x in X.

Again, if X is a set and (Y,U) a uniform space, than a finer uniformity
on the set Y X is the uniformity of uniform convergence. For each U ∈ U,
let U0 = {(f, g) ∈ Y X × Y X : (f(x), g(x)) ∈ U for all x ∈ X}. Thus,
U0 = ∩x∈XVx,U , and in particular U0 ⊂ Vx,U , all U ∈ U, all x ∈ X.

Then [prove!] for U, V ∈ U

1. (U0 ◦ V0) ⊂ (U ◦ V )0,

2. U ⊂ V =⇒ U0 ⊂ V0,

3. (U ∩ V )0 = U0 ∩ V0,

4. (U0)
−1 = (U−1)0, and

5. ∆Y X ⊂ U .

It follows that U0 = {U0 : U ∈ U} is the base for a uniformity on Y X , called
the uniformity of uniform convergence.

Recall: If Z is any set and B is any collection of subsets of Z × Z then B

is the base for a uniquely determined uniformity on Z iff
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1. U ∈ B =⇒ ∃V ∈ B such that V ◦ V ⊂ U ,

2. U, V ∈ B =⇒ ∃W ∈ B such that W ⊂ U ∩ V ,

3. U ∈ B =⇒ ∃V ∈ B such that V −1 ⊂ U

4. U ∈ B =⇒ ∆Z ⊂ U .

To verify the first of these conditions for U0: If U ∈ U, choose V ∈ U such
that V ◦ V ⊂ U . Then V0 ◦ V0 ⊂ (V ◦ V )0 ⊂ U0.

Since U0 = ∩x∈XVx,U for all U ∈ U, we have that the uniformity of uniform
convergence is finer than the uniformity of pointwise convergence.

The topology of the uniformity of uniform convergence is called the topology
of uniform convergence; it depends on the uniformity U of Y , not just the
topology of Y . [On the other hand, the topology of pointwise convergence
on Y X depends only on the topology of Y ; and of course makes sense when
Y is just a topological space, not a uniform space.]

Theorem. If X is a topological space and (Y,U) is a uniform space, then
the set C of all continuous functions f : X −→ Y from X into Y is closed in
Y X for the topology of uniform convergence.

Note: It is equivalent to say that, if D is a directed set and if fn : X −→ Y

is a continuous function from X into Y for all n ∈ D, and if the net (fn)n∈D
converges to a function f ∈ Y X for the topology of uniform convergence

[Equivalent terminology: ”and if the net (fn)n∈D of continuous functions
from X into Y converges uniformly to a function f : X −→ Y ”], then the
function f : X −→ Y is continuous.

Proof. For any x0 ∈ X, we show that f is continuous at x0. To show this,
we must show that, for every U ∈ U, there exists a neighborhood V of x0 in
X such that f(V ) ⊂ U(f(x0)).

Since (fn)n∈D converges uniformly to f in Y X , we know that ∃N ∈ D such
that

(i) (fi(x), f(x)) ∈ U , for all i ≥ N in D and all x ∈ X.

In particular,

(i’) (fN(x), f(x)) ∈ U , for all x ∈ X.
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Since fN : X −→ Y is continuous, it is continuous at x0. Therefore there
exists a neighborhood V of x0 in X such that fN(V ) ⊂ U(fN(x0)). That is,
we have that

(ii) (fN(v), fN(x0)) ∈ U , for all v ∈ V .

Equation (i’) hold for all x ∈ X, and in particular for all v ∈ V :

(iii) (fN(v), f(v)) ∈ U , for all v ∈ V .

Since x0 ∈ V , (iii) implies

(iv) (fN(x0), f(x0)) ∈ U .

If U ∈ U is symmetric, then (ii), (iii) and (iv) imply that

(f(v), f(x0)) ∈ U ◦ U ◦ U for all v ∈ V .

[(iii) says that “f(v) and fN(v) are U -close”; (ii) says that “fN(v) and fN(x0)
are U -close”; and (iv) says that “fN(x0) and f(x0) are U -close”].

Thus, for every symmetric entourage U ∈ U, we’ve found a neighborhood V

of x0 in X such that

f(V ) ⊂ (U ◦ U ◦ U)(f(x0)).

Therefore f : X −→ Y is continuous at x0. This being the case for every
x0 ∈ X, we have that f : X −→ Y is continuous.

Example. Let fn : [1,∞) −→ R be the continuous function, fn(x) = 1
xn
,

x ≥ 1. Then the sequence of functions (fn)n≥1 converges pointwise to the
function f : X −→ Y , where

f(x) =

{

1, x = 1

0, x > 1,

a function that is not continuous.

Thus, to ensure continuity for the limit of a net of continuous functions from a
topological space to a uniform space, we need to know that the net converges
uniformly, not merely that it converges pointwise.

Note: If X is a set and Y is a pseudometric space, and if (fn)n∈D is a
net of functions from the set X into the pseudometric space (Y, d), and if
f : X −→ Y is a function, then the net (fn)n∈D converges uniformly to f iff
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for every ǫ ≥ 0, ∃N = N(ǫ) ∈ D such that

d(fn(x), f(x)) ≤ ǫ for all n ≥ N and for all x ∈ X.

The net (fn)n∈D converges pointwise to f iff for every x ∈ X and every
ǫ ≥ 0, ∃N = N(x, ǫ) ∈ D such that

d(fn(x), f(x)) ≤ ǫ forall n ≥ N

Note also: If X is a set and (Y,U) is a uniform space, then a net of functions
fn : X −→ Y , n ∈ D is Cauchy for the uniformity of pointwise convergence

iff the net (fn(x))n∈D in the uniform space (Y,U) is a Cauchy net, for all
x ∈ X iff for every x ∈ X and every U ∈ U, ∃N = N(x, U) ∈ D such that
i, j ≥ N in D implies (fi(x), fj(x)) ∈ U .

The net of functions fn : X −→ Y , n ∈ D is Cauchy for the uniformity of

uniform convergence iff for every U ∈ U, ∃N = N(U) ∈ D such that i, j ≥ N

in D implies (fi(x), fj(x)) ∈ U for all x ∈ X.
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