The Real Fator Conjecture.

Falou's Conjecture:

Hyperbolic maps are open and dense among all rational maps.

Recall Myperbolic maps).

A rational map $f: \mathbb{C} \longrightarrow \mathbb{C}$, of deg d > 1, is said to be hyperbolic ; f all critical points of tend to an attracting cycle.

History :

- · 1920 Fator's memoir.
- · 1971 Jakobson. Solution in the Ct topology.
- · 1992, Sullinau.
- 1997, Graczyk and Swiatek, and Lyubich. Solution in the real guadratic case.
- * 2003, Kozlorski. Solution in the smooth unimodal case.
- · Zoos, Kozlovski, Shen, van Strien. Real poly_ normials with real crit. points
- · 2004, ___, Real polynomial.

Quasiconformal Maps. $\overline{\partial_3} = \frac{1}{2i} \left(\frac{2}{3} - i \frac{2}{5} \right)$ $\cdot \mathcal{U} \setminus C C$ non-empty, open. $\overline{\partial_5} = \frac{1}{2i} \left(\frac{2}{3} + i \frac{2}{5} \right)$ $\cdot f: \mathcal{U} \longrightarrow \mathcal{V}$ orientation - preserving hom. f is called quasiconformal if: \hat{P} is absolutely continuous on line. For any $[a,b] \times [c,d] \subset \mathcal{U}$ $\times 1 \longrightarrow f(x+iy)$ are absolutely continuous. $\int -p f(x+iy)$ are absolutely continuous. $\int \frac{2}{2i} \left| \frac{2}{2i} \right| \leq k \left| \frac{2}{2i} \right|$ a.e. in \mathcal{U} for some $0 \leq k < L$. * f is K-guasiconformed with $K := \frac{1+k}{1-k} \ge 1$. Proposition: $f: \mathcal{U} \longrightarrow V$ is K-guasiconformal $(K \ge 1)$ iff for all annuli $A \subseteq \mathcal{U}$ $\frac{1}{K} \mod(A) \le \mod(f(A)) \le \operatorname{K} \mod(A)$.

Definition: Let U and V be non-empty open sets in C. An orientation preserving homeo_ morphism f: U --- V is called quasiconformal it: D f is absolutely continuous on line. For any [a,b] * [c,d] C U × 1- + f(x+ig)] are absolutely continuous. The Measurable Riemann Mapping Theorem.

- Let μ be a measurable Beltrami Coeff. on the Riemann sphere \hat{C} with $\|\|\mu\|_{\infty} = k < 1$. Then
 - Derive exists a unique quasiconformal homeo morphism f = f^[m]: Ĉ — C which fixes o, L, oo and solves the Beltrami equation
 - $K = \frac{L + lmr}{L lmr} \quad M \cdot \frac{\partial f}{\partial z} = \frac{\partial f}{\partial \overline{z}} \quad \mathcal{J} = x + i y$ $\mathcal{J}(x, y) [dz] \quad \swarrow \qquad \mathcal{J}(x, y) [dz + M d\overline{z}]$

The Deuse Hyperbolicity Theorem [Graczyk and
Swiatek 97, Lyubich 97]
In the seal quadratic family
$$F_a(x) = a \times (1-x)$$
; $0 \le a \le 4$
the mapping F_a has an attracting cycle, and
thus is hyperbolic, for an open and dense set
of parameters a .

Main Theoseer => Deuse Hyperbolicity. Fact 1: Ca:=?b∈[0,4]: fa and fb are 9.c.-conj. on CJ. Then Ca = 2ay or is open. Proof: · fa and fb 9.c.-conj , a ≠b. · H 9.c. conjugacy between fa and fb. λ = δ(x.) ldz + μdz l + x ~ + μ

Since H is q.c. there is an fb-invariant
Baltrami coefficient in not identically O.
· C E C | | C | ~ I M bo
· He given by ③ in the MRMT.
Then He dependes analytically on c and

$$f_{+(c)} = H_c \circ f_b \circ H_c^{-1}$$

is a analytic family of analytic functions. (frict is I-q.c.) and is a 2-1 branched contrived of the Riemann sphere fixing 0 and 00.

$$P q.c. \longrightarrow M \text{ Beltraumi coefficient}$$

$$M \leftarrow P^* (\mathcal{P}(x, \xi) | dz |)$$

$$M = P^* M_0 \longrightarrow M = \frac{4z}{P_z}$$

$$P^*_b M = P^*_b (P^* M_0)$$

$$= (P_0 F_b)^* M_0$$

$$= (F_a \circ P)^* M_0$$

$$= P^* (F^*_a M_0)$$

$$= P^* M_0 = M.$$

Fact 2:

These are only countably many complex values of a for which the map $\times 1 \longrightarrow a \times (1-x)$ has a newtral periodic point. Proof. k > 0, $\lambda \in C$, $|\lambda| \leq 1$ Then, the pair of eq. $f_a^k(3) = 3$ and $\frac{df_a^k}{d3}(3) = \lambda$ has only finitely many solutions (9,3). Theorem:

· P(a,3) isseducible polynomial of two complex vasiables.

Then 2 solutions of $P(a_1 z_1) = 0 \int U_{200}^{200}$ hos the structure of a compact Riemann subface. Moreover, the projections are meromorphics of this surface.

Then the set of solutions of
$$f_a^k(3) - 3 = 0$$

splits into the union of finitely many compact
Riemann surfaces.
 $\cdot \frac{df_a^k}{d3}(3)$ is meromorphic on each RS.
 $If \frac{df_a^k}{d3}(3) = \lambda$ infinitly times, by the
identity principle it must be constant in one of
the surfaces, say S.
 $S:= \{(a, 3) \text{ soluting both equations}\} \subset V$
Then, $\Pi_L(\hat{S}) \subseteq \text{ connectedness locus}$

XX XX

Fact 3 [Guckenheimer 79]

fa (x) = ax (1-x) has no stable periodic orbits.
Ta := 2 b : fa and fb are top. conjugated :n R;
Claim: Ta is closed.
Proof:
· 2bm/mzi = Ta , bn --- b.
=> sgn (f^k_{bn} ('12) - '12) remain fixed for all m.
By continuity Sgn (f^k_{bn} ('12) - '12) remain fixed for all m.
the same (claim follows from Facts),

Fact I:
$$a \in (0, 4]$$
 s.t. Fa has only sepalling
periodic orbits = D Ca \cap IR = Ta is either
open or a point. Since Ta is closed, it must
be a point.
By Fact 2 we can consider $a \in (0,4]$ s.t fa
has only repelling periodic orbits.
 $a_1 \neq a$ s.t. fat has only repelling periodic orbits.
 \Rightarrow fa and fat are not top. conj.
By Fact 3
 $\text{sgn}(f_a^k(1/2) - 1/2) \neq \text{sgn}(f_{a_1}^k(1/2) - 1/2).$

By the intermediate value theorem, exists
a. between
$$a_{k}$$
 and a s.t.
 $f_{a_{o}}^{k}('|z) - '|z = 0$.
So fao is hyperbolic.

References:

- Lars V. Ahlfors. Lectuses on Quasiconformal Mappings. University Lecture Series. American Mathematical Society. 2006.
- Jacek Graczyk, Grzegorz Swiatek. The Real Fator Conjecture. Annals of Mathematics Studies. 1998.
- John Gruchenheimer. Sensitive Dependence to Initial Conditions for One-Dimensional Maps. Comm. Math. Phys. 1979.