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MANDELBROT set

Figure: Failiure of NEWTON’s root finding algorithm, from Lukas GEYERwebsite.

MANDELBROT set
Quadratic polynomials: For c ∈ C, fc (z) := z2 + c ;

Viewed as a dynamical system acting on C.
n-th iterate of fc : f nc := fc ◦ · · · ◦ fc︸ ︷︷ ︸

n

;
MANDELBROT set: M := {c ∈ C : (f nc (0))∞n=1 is bounded}.

b

Periodic point of period n: p ∈ C such that f nc (p) = p.
• Orbit: O(p) := {p, fc (p), . . . , f n−1

c (p)};
• Multiplier: |Df nc (p)|; Same for every periodic point in O(p).
• p is:

• attracting if |Df nc (p)| < 1;
• indifferent if |Df nc (p)| = 1;
• repelling if |Df nc (p)| > 1;

MANDELBROT set
H := {c ∈ C : fc has an attracting periodic point} ⊂ M.

By FATOU’s theorem;Hyperbolic component of M: Connected component of H.For c ∈ H, SMALE’s hyperbolicity theory applies to fc .
FATOU Conjecture
H is dense in M.

Ñ Hyperbolicity is dense in the quadratic family;It is known to be false in higher dimensions.
MLC Conjecture (DOUADY–HUBBARD)
The MANDELBROT set is locally connected.

The MANDELBROT set is connected (DOUADY–HUBBARD, SIBONY).
Theorem (DOUADY–HUBBARD)
MLC Conjecture Ñ FATOU conjecture.

Ñ THURSTON’s combinatorial model of the MANDELBROT set is accurate.



Plan

Figure: Adrian DOUADY and John HUBBARD.
b

Plan:
1 Hyperbolic components attached to the main cardioid;
2 External rays and the limbs of the MANDELBROT set;
3 YOCCOZ’ inequality and MLC at points of the main cardioid.

Review of Part I
• M ∩ R = [−2, 1

4 ]. For c ∈ [−2, 1
4 ]:

• Fixed points of fc : α(c) := 1−
√

1−4c
2 , β(c) := 1+√1−4c

2 ;
• Invariant interval: I (c) := [−β(c), β(c)], fc (I (c)) ⊆ I (c).Up to a change of coordinates,

fc |I (c) is the logistic map gλ (x ) := λx (1− x ) with λ = 1 +√1− 4c .
• Main hyperbolic component or hyperbolic component ofperiod one:

W1 := {c ∈ C : fc has an attracting fixed point}= {λ
2 −

λ2

4 : λ ∈ D
} ;

• Hyperbolic component of period two:
W2 := {c ∈ C : fc has an attracting periodic pointof minimal period 2}= {λ−1

4 : λ ∈ D
}
.

Period doubling bifurcation

Figure: Hyperbolic components ofperiods 1 and 2. Figure: Period doublingbifurcation
• At c = −3

4 : Dfc (α(c)) = −1Ñ α(c) is indifferent;
• For c < −3

4 : α(c) is repelling & orbit of period 2 appears.
Period doubling bifurcation: For every generic family (gλ )λ such that;

gλ∗ (p∗) = p∗ and Dgλ∗ (p∗) = −1;
Period doubling movie.

Period doubling bifurcation
µ : C → C

λ 7Ï µ(λ) := λ
2 −

λ2

4 . Parametrization of W1 ;
µ(λ) : unique c such that fc has a fixed point α(c) of multiplier λ.For θ in R: Internal ray of angle θ = µ({r exp(2πiθ) : r ∈ [0, 1)}).

Figure: Internal ray of angles 1
2 and 1

3 .



Period tripling bifurcation

Figure: Internalray of angle 1
3 ,extended.

For r > 0:
• c(r ) := µ(r exp(2πi 13 ));
• α(r ): Fixed point of fc(r ) ofmultiplier r exp(2πi 13 ).At r = 1: Dfc(1)(α(1)) = exp(2πi 13 )

Ñ α(1) is indifferent;

Period tripling bifurcation

For r > 1: α(r ) is repelling & orbit of period 3 “appears”.
Period tripling movie.For r > 1 close to 1: The new periodic orbit is attracting

Ñ c(r ) ∈ hyperbolic component of period 3.
Period tripling bifurcation: For every generic family (gλ )λ such that;

gλ∗ (p∗) = p∗ and Dgλ∗ (p∗) = exp(2πi 13 );FATOU’s theorem Ñ genericity condition.

Period multiplying bifurcation
For every rational number p

q in (0, 1):
• c(r ) := µ(r exp(2πi pq ));
• α(r ): Fixed point of fc(r ) of multiplier r exp(2πi pq ).
• At r = 1: Dfc(1)(α(1)) = exp(2πi pq )Ñ α(1) is indifferent;
• For r > 1: α(r ) is repelling & orbit of period q “appears”;
• For r > 1 close to 1: The new periodic orbit is attracting

Ñ c(r ) ∈ hyperbolic component of period q.
ρ p

q
:= µ(exp(2πi pq ));

H p
q
: Hyperbolic component containing c(r ), for r > 1 close to 1.

H 1
2

= W2 ;
∂H p

q
is tangent to ∂W1 at ρ p

q
;

External rays

Figure: MANDELBROT set, from Tomoki KAWAHIRA’s gallery.



External rays
Theorem (DOUADY–HUBBARD)
There is a unique conformal map

Φ: C \ D→ C \M

that is tangent to the identity at ∞.
By CARATTHEODORY’s theorem:MLC Ñ Φ extends continuously to ∂D.

DefinitionFor θ in R: The external ray of angle θ of M, is
R(θ) := {Φ(r exp(2πiθ)) : r > 1}.

If lim
r→1+ Φ(r exp(2πiθ))

exists, then R(θ) lands and the limit is the landing point of R(θ).

External rays

Figure: External ray of angle 3
8 .

External rays
Theorem (DOUADY–HUBBARD)
For p

q in (0, 1): ρ p
q

is the landing point of precisely two rays.

θ−(pq ), θ+(pq ) : Angles of rays landing at ρ p
q
.

θ−(1
2 ) = 1

3 , θ+(1
2 ) = 2

3 . θ−(1
3 ) = 1

7 , θ+(1
3 ) = 2

7 .

External rays
For p

q in (0, 1):
R
(
θ−
(
p
q

))
∪ {ρ p

q
} ∪ R

(
θ+ (p

q

))
cuts the plane in 2 parts.
W p

q
: Piece containing H p

q
.

p
q -Wake.

L p
q

:= M∩W p
q
.

p
q -Limb of M;

L p
q

contains a copy of M.
Theorem
M = W 1 ∪

(⋃
p
q∈(0,1)∩Q L p

q

)
.



YOCCOZ’ inequality

Figure: Jean-Chiristophe YOCCOZ.
Theorem (YOCCOZ)
The MANDELBROT set is locally connected at every point of ∂W1.

YOCCOZ’ inequality
YOCCOZ’ inequality
p
q : Rational number in (0, 1);
r (q) := log 2

q .
In the coordinate log λ, we have

L p
q
⊂ B

(
2πi p

q
+ r (q), r (q)) .

Disc of radius r (q) tangent to the imaginary axis at 2πi pq ;
Roughly: The diameter of L p

q
is ≤ Const.

q ;
Ñ MLC at every point of ∂W1 ;

Idea of proof.


