MANDELBROT set

An introduction to the MANDELBROT set, II

JUAN RIVERA-LETELIER

U. of Rochester

Dynamical Systems Workgroup May 21, 2021

MANDELBROT set

Quadratic polynomials: For $c \in C$, $f_c(z) := z^2 + c$; Note an element optimized of f_c : $f_c^{(n)} := \frac{1}{c_c} \circ \cdots \circ f_c$; MANDELEBOT set: $\mathcal{M}_i := \frac{1}{c_c} \in \mathbb{C} : (f_c^{(n)}(0))_{n-1}^{\infty}$ is bounded). Periodic point of period $\pi: p \in \mathbb{C}$ such that $f_c^{(n)}(p) = p$. • Orbit: $\mathcal{O}(p) := \{p, f_c(p), \dots, f_c^{(n-1)}(p)\};$ • Multiplier: $|Df_c^{(n)}(p)|$:

• p is:

attracting if |Dfⁿ_c(p)| < 1;
 indifferent if |Dfⁿ_c(p)| = 1;

repelling if |Dfⁿ(p)| > 1;

Review of Part 1

Plan

Figure: Adrian DOUADY and John HUBBARD.

Plan:

- Hyperbolic components attached to the main cardioid;
- External rays and the limbs of the MANDELBROT set:
- S Yoccoz' inequality and MLC at points of the main cardioid.

- Fixed points of f_c: α(c) := ^{1-√1-4c}/₂, β(c) := ^{1+√1-4c}/₂;
 Invariant interval: I(c) := [−β(c), β(c)], f_c(I(c)) ⊆ I(c).

Up to a change of coordinates, $f_{c}|_{x=1}$ is the locistic map $x_1(x) := \lambda x (1-x)$ with $\lambda = 1 + \sqrt{1-4c}$.

 $W_1 := \{ c \in \mathbb{C} : f_c \text{ has an attracting fixed point} \}$ $=\left\{\frac{\lambda}{2}-\frac{\lambda^2}{4}:\lambda\in\mathbb{D}\right\};$

 $W_2 := \{ c \in \mathbb{C} : f_c \text{ has an attracting periodic point} \}$ of minimal period 23

For r > 1: $\alpha(r)$ is repelling $\hat{\alpha}$ orbit of period 3 "appears".

For r > 1 close to 1: The new periodic orbit is attracting

 $\Rightarrow c(r) \in$ hyperbolic component of period 3.

Period tripling bifurcation: For every generic family $(g_{\lambda})_{\lambda}$ such that: $g_{L_{\lambda}}(\rho_{\lambda}) = \rho_{\lambda}$ and $Dg_{L_{\lambda}}(\rho_{\lambda}) = \exp[2\pi i \frac{1}{2}]$; DEDGY a theorem \rightarrow genericity condition.

Period multiplying bifurcation

For every rational number $\frac{p}{q}$ in (0, 1):

- $c(r) := \mu(r \exp(2\pi i \frac{p}{a}));$
- $\alpha(r)$: Fixed point of $f_{c(r)}$ of multiplier $r \exp(2\pi i \frac{p}{q})$.
- At r = 1: $Df_{c(1)}(\alpha(1)) = \exp(2\pi i \frac{\rho}{\rho}) \Rightarrow \alpha(1)$ is indifferent;
- For r > 1: α(r) is repelling & orbit of period q "appears";
- For r > 1 close to 1: The new periodic orbit is attracting $\Rightarrow c(r) \in$ hyperbolic component of period q.

$\begin{array}{l} \rho_{\frac{n}{2}}:=\mu(\exp(2\pi i\frac{p}{q}));\\ H_{\frac{n}{2}}: \mbox{ Hyperbolic component containing } c(r), \mbox{ for } r>1 \mbox{ close to } 1. \end{array}$

 $H_{\frac{1}{2}} = W_2;$ $\partial H_{\frac{1}{2}}$ is tangent to ∂W_2 at $\rho_{\frac{1}{2}}$;

Yoccoz' inequality

Yoccoz' inequality

Figure: Jean-Chiristophe Yoccoz.

Theorem (YOCCOZ) The MANDELBROT set is locally connected at every point of ∂W_1 . Voccoz' inequality $\frac{p}{q}$: Rational number in (0, 1); $r(q) := \frac{\log 2}{q}$. In the coordinate $\log \lambda_r$ we have

 $L_{\frac{p}{q}} \subset B\left(2\pi i \frac{p}{q} + r(q), r(q)\right).$

Disc of radius r[q] tangent to the imaginary axis at $2\pi i \frac{2}{9}$; Recapily: The diameter of $L_{\frac{1}{9}}$ is $\leq \frac{Coupt}{q}$; $\Rightarrow MLC$ at every point of ∂W_{2} . Mere of proof.