An introduction to the Mandelbrot set, II

Juan Rivera-Letelier
U. of Rochester

Dynamical Systems Workgroup
May 21, 2021

	Mandelbrot set
Quadratic polynomials: For $c \in \mathbb{C}, f_{c}(z):=z^{2}+c$;	
$n \text {-th iterate of } f_{c}: f_{c}^{n}:=\underbrace{f_{c} \circ \cdots \circ f_{c} ;}$	
Mandeibrot set: $\mathbb{M}:=\{c \in \mathbb{C} \underbrace{n}:\left(f_{c}^{n}(0)\right)_{n=1}^{\infty}$ is bounded $\}$.	
\sim	
Periodic point of period $n: p \in \mathbb{C}$ - Orbit: $O(p):=\left\{p, f_{c}(p), \ldots, f_{c}^{n-1}\right.$ - Multiplier: \|Df $f_{c}^{n}(p) \mid$;	$\text { at } f_{c}^{n}(p)=p \text {. }$
- p is: - attracting if $\left\|D f_{c}^{n}(p)\right\|<1$; - indifferent if $\left\|D f_{c}^{n}(p)\right\|=1$; - repelling if $\left\|D f_{c}^{n}(p)\right\|>1$;	Ster

Mandelbrot set

$\mathscr{F}:=\left\{c \in \mathbb{C}: f_{c}\right.$ has an attracting periodic point $\} \subset \mathscr{M}$.

Fatou Conjecture
\mathscr{H} is dense in $\mathbb{I M}$.
\rightarrow Hypertolicity is dense in the quadratic family it is known to be false in higher dimensions.

MLC Conjecture (Douady-Hubbard)

The Mandelbrot set is locally connected.
The Manderamot set is connocted (Doinav-Hunsur, Smony).
Theorem (Douady-HubBard)
MLC Conjecture \Rightarrow Fatou conjecture.

Figure: Adrian Douady and John Hubbard.

Plan:
(1) Hyperbolic components attached to the main cardioid; (2) External rays and the limbs of the Mandelbrot set;

3 Yoccoz' inequality and MLC at points of the main cardioid.

- $\mathbb{N} \cap \mathbb{R}=\left[-2, \frac{1}{4}\right]$. For $c \in\left[-2, \frac{1}{4}\right]$:
- Fixed points of $f_{c}: \alpha(c):=\frac{1-\sqrt{1-4 c}}{2}, \beta(c):=\frac{1+\sqrt{1-4 c}}{2} ;$
- Invariant interval: $\|(c):=[-\beta(c), \beta(c)], f_{c}(I(c)) \subseteq I(c)$.
- Main hyperbolic component or hyperbolic component of period one:

$$
\begin{aligned}
W_{1} & :=\left\{c \in \mathbb{C}: f_{c} \text { has an attracting fixed point }\right\} \\
& =\left\{\frac{\lambda}{2}-\frac{\lambda^{2}}{4}: \lambda \in \mathbb{D}\right\}
\end{aligned}
$$

- Hyperbolic component of period two:

$$
\begin{aligned}
W_{2}:= & \left\{c \in \mathbb{C}: f_{c}\right. \text { has an attracting periodic point } \\
& \text { of minimal period } 2\} \\
= & \left\{\frac{\lambda-1}{4}: \lambda \in \mathbb{D}\right\} .
\end{aligned}
$$

Period doubling bifurcation

Figure: Hyperbolic components of periods 1 and 2 .

Figure: Period doubling bifurcation

- At $c=-\frac{3}{4}: D f_{c}(\alpha(c))=-1 \Rightarrow \alpha(c)$ is indifferent;
- For $c<-\frac{3}{4}: \alpha(c)$ is repelling $\&$ orbit of period 2 appears.

Period doubling bifurcation

$$
\begin{aligned}
\mu: \mathbb{C} & \rightarrow \mathbb{C} \\
\lambda & \mapsto \mu(\lambda):=\frac{\lambda}{2}-\frac{\lambda^{2}}{4} .
\end{aligned}
$$

For θ in \mathbb{R} : Internal ray of angle $\theta=\mu(\{r \exp (2 \pi i \theta): r \in[0,1)\})$.

Figure: Internal ray of angle $\frac{1}{3}$, extended.

$$
\begin{aligned}
& \text { For } r>0 \text { : } \\
& \text { - } c(r):=\mu\left(r \exp \left(2 \pi i \frac{1}{3}\right)\right) ; \\
& \text { - } \alpha(r) \text { : Fixed point of } f_{c(c r)} \text { of } \\
& \text { multiplier } r \exp \left(2 \pi i \frac{1}{3}\right) . \\
& \qquad \begin{array}{l}
\text { At } r=1: D f_{c(1)}(\alpha(1))=\exp \left(2 \pi i \frac{1}{3}\right) \\
\qquad \quad \Rightarrow \alpha(1) \text { is indifferent; }
\end{array}
\end{aligned}
$$

For $r>1: \alpha(r)$ is repelling $\&$ orbit of period 3 "appears".
Period tripling movit.
For $r>1$ close to 1 : The new periodic orbit is attracting
$\Rightarrow c(r) \in$ hyperbolic component of period 3.

Period multiplying bifurcation

For every rational number $\frac{p}{q}$ in $(0,1)$:

- $c(r):=\mu\left(r \exp \left(2 \pi i \frac{p}{q}\right)\right) ;$
- $\alpha(r)$: Fixed point of $f_{c(r)}$ of multiplier $r \exp \left(2 \pi i \frac{p}{q}\right)$.
- At $r=1: D f_{c(1)}(\alpha(1))=\exp \left(2 \pi i \frac{p}{q}\right) \Rightarrow \alpha(1)$ is indifferent;
- For $r>1: \alpha(r)$ is repelling $\&$ orbit of period q "appears";
- For $r>1$ close to 1 : The new periodic orbit is attracting
$\Rightarrow c(r) \in$ hyperbolic component of period q.
$\rho_{\frac{\rho}{q}}:=\mu\left(\exp \left(2 \pi i \frac{p}{q}\right)\right) ;$
$H_{\frac{p}{q}}$: Hyperbolic component containing $c(r)$, for $r>1$ close to 1 .

$$
\begin{array}{r}
H_{\frac{1}{2}}-W_{2} ; \\
\mathrm{aH}_{2}^{2} \text { is tangent to } a W_{1} \text { al } \rho ; \frac{3}{4} ;
\end{array}
$$

External rays

Theorem (Douady-Hubbard)
There is a unique conformal map

$$
\Phi: \mathbb{C} \backslash \overline{\mathbb{D}} \rightarrow \mathbb{C} \backslash \mathbb{N}
$$

that is tangent to the identity at ∞.

Definition

For θ in \mathbb{E}. The external ray of angle θ of \mathbb{J}, is

$$
\mathscr{R}(\theta):=\{\Phi(r \exp (2 \pi i \theta)): r>1\} .
$$

If

$$
\lim _{r \rightarrow 1^{+}} \Phi(r \exp (2 \pi i \theta))
$$

exists, then $\mathscr{R}(\theta)$ lands and the limit is the landing point of $\mathscr{R}(\theta)$.

Figure: External ray of angle $\frac{3}{8}$.

External rays
For $\frac{p}{q}$ in $(0,1)$:

$$
\mathscr{R}\left(\theta^{-}\left(\frac{\rho}{q}\right)\right) \cup\left\{\rho_{\frac{\rho}{q}}\right\} \cup \mathscr{R}\left(\theta^{+}\left(\frac{\rho}{q}\right)\right)
$$

cuts the plane in 2 parts.
$W_{\frac{\rho}{4}}$: Piece containing $H_{\frac{\rho}{q}}$.
$L_{\frac{p}{4}}:=\mathcal{H K} \cap W_{\frac{\rho}{q}}$.

Theorem
$\mathscr{N K}=\bar{W}_{1} \cup\left(\bigcup_{\frac{p}{q} \in(0,1) \cap Q} L_{\frac{p}{q}}\right)$.

