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1 Direct Products and Direct Sums

We discuss two universal constructions in this section. We start with the
direct product construction:

Definition 1.1 (Direct Products). Let {Gα}α∈I be a collection of groups
indexed by an index set I. We may form the Cartesian product

∏
α∈I Gα.

The elements of this Cartesian product can be denoted by tuples (aα)α∈I .
We refer to the entry aα as the αth component of this tuple. We define

a multiplication on this Cartesian product componentwise, i.e., (aα) ⋆ (bα) =
(aα ⋆α bα) where ⋆α is the group multiplication in Gα.

It is easy to check that this makes
∏

α∈I Gα into a group with identity
element (eα)α∈I where eα is the identity element of Gα for each α ∈ I.

When the index set I = {1, 2, . . . , n} is finite we usually write
∏

α∈I Gα

as
∏n

i=1 Gi or sometimes more simply as G1 × · · · × Gn. Finally when the
index set I = N we write

∏
α∈N

Gα as
∏∞

i=0 Gi.

Now we talk about the second construction called the direct sum con-
struction which is similar but as we shall see, different in essential ways!

Definition 1.2 (Direct Sums). Let {Gα}α∈I be a collection of groups in-
dexed by an index set I. The direct sum of the collection is denoted by
⊕α∈IGα and is defined to be the subgroup of elements in

∏
α∈I Gα which have

only finitely many nontrivial components, i.e.,

⊕α∈IGα = {(aα)α∈I ∈
∏

α∈I

Gα|aα = eα for all but finitely many α ∈ I}.
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It is not hard to check that ⊕α∈IGα is a normal subgroup of
∏

α∈I Gα.
It is trivial to see that for |I| < ∞, ⊕α∈IGα =

∏
α∈I Gα. However when

|I| = ∞, these groups are quite different as the next example will show!

Example 1.3 (Difference between direct sums and direct products).
Let us consider

∏∞
i=0 Z/2Z. Thus in this example Gi = Z/2Z for all i ∈ N.

Explicitly we have:

∞∏

i=0

Z/2Z = {(a0, a1, a2, . . . )|ai ∈ Z/2Z for all i ∈ N}.

and the group structure is given by componentwise addition modulo 2.
As a set,

∏∞
i=0 Z/2Z is the set of all binary sequences and a simple Cantor

diagonal argument shows that this set is uncountable.
For example, supposing the direct product were countable then∏∞

i=0 Z/2Z = {f1, f2, . . . }. Then writing fi = (ai0, ai1, ai2, . . . ) we can create
f = (b0, b1, . . . ) ∈

∏∞
i=0 Z/2Z by insisting bi 6= aii. Then clearly f 6= fi for

all i and so our original listing of
∏∞

i=0 Z/2Z was incomplete thus giving a
contradiction.

Now ⊕∞
i=0Z/2Z is the subgroup of binary sequences which are eventually

0. Let Fn = {(a0, . . . , an−1, 0, 0, . . . )|ai ∈ Z/2Z for i = 0, . . . , n − 1}. Then
|Fn| = 2n for all n ∈ N and ⊕∞

i=0Z/2Z = ∪∞
n=1Fn is thus a countable union

of finite sets and hence is countable.
Hence there is no bijection between

∏∞
n=0 Z/2Z and ⊕∞

n=0Z/2Z and so
there is no isomorphism between them. Thus the direct sum and the direct
product in this case are nonisomorphic groups.

Definition 1.4 (Projection and inclusion maps). Given a direct product
G =

∏
α∈I Gα we have canonical projection maps πβ : G → Gβ given by

πβ((aα)α∈I) = aβ. It is easy to check that πβ : G → Gβ is an epimorphism
of groups for each β ∈ I. We call πβ the projection to the βth factor.

These projection maps restrict to give epimorphisms πβ : ⊕α∈I Gα
// //Gβ

also.
We also have canonical monomorphisms iβ : Gβ

�

�

// ⊕α∈IGα given by

iβ(g) = (aα)α∈I where aβ = g and aα = eα for α 6= β.
Thus we may regard the image of iβ as an isomorphic copy of Gβ inside

of ⊕α∈IGα.
We may also regard iβ as a map into

∏
α∈I Gα and so similar statements

hold for the direct product.
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The direct product construction has an important universal property that
we will later discuss in the context of category theory. This is stated and
proved in the next proposition:

Proposition 1.5 (Universal product property of direct products).
Let {Gα}α∈I be a collection of groups and suppose there is a group G and
group homomorphisms λβ : G → Gβ for each β ∈ I. Then there is a unique
homomorphism λ making the following diagram commute for all β ∈ I:

G

λβ ��?
??

??
??

?
___ λ //___

∏
α∈I Gα

πβ
zzvvvvvvvvv

Gβ

In fact λ(g) = (λα(g))α∈I for all g ∈ G.
Thus there is a natural bijection between the sets

∏

α∈I

Hom(G, Gα) ↔ Hom(G,
∏

α∈I

Gα)

given by (λα)α∈I ↔ λ. Here Hom(G, H) denotes the set of all homomor-
phisms from G to H.

Proof. In order for the diagram to commute, i.e., πβ ◦ λ = λβ for all β ∈ I,
it is clear that we need to define λ(g) = (λα(g))α∈I for all g ∈ G. This gives
uniqueness.

It is then a simple check to see that λ so defined is indeed a homomorphism
of groups. This gives existance.

A dual property holds for direct sums as long as we restrict ourselves to
Abelian groups. For the rest of this section, we will be dealing with Abelian
groups so it is useful to review some conventions:

If A is an Abelian group then it is common to denote the group operation
⋆ by +. It is then also common to denote the identity e by 0 and call it zero.
Finally we denote xn = x ⋆ · · · ⋆ x by nx and write

∑n

i=1 xi for x1 + · · ·+ xn.
Also if {x1, x2, . . . } is a sequence of elements of A such that all but finitely

many of the xi are zero then we define
∑∞

i=1 xi as the sum of the nonzero
elements. (

∑∞
i=1 xi is defined to be 0 if all the elements are zero). We will

use these conventions throughout the remainder of this section.
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Proposition 1.6 (Universal coproduct property of direct sums of
Abelian groups). Let {Aα}α∈I be a collection of Abelian groups and suppose
there is an Abelian group A and group homomorphisms µβ : Aβ → A for
each β ∈ I. Then there is a unique homomorphism µ making the following
diagram commute for all β ∈ I:

A µoo_ _ _ ⊕α∈IAα
_ _ _

Aβ

µβ

__???????? iβ

::vvvvvvvvv

In fact µ((aα)α∈I) =
∑

α∈I µα(aα) for all (aα)α∈I ∈ ⊕α∈IAα.
Thus there is a natural bijection between the sets

∏

α∈I

Hom(Aα, A) ↔ Hom(⊕α∈IAα, A)

given by (µα)α∈I ↔ µ.

Proof. First of all notice that for any (aα)α∈I ∈ ⊕α∈IAα we may write
(aα)α∈I =

∑
α∈I iα(aα) where the sum is finite.

Thus if µ : ⊕α∈IAα → A is a homomorphism then we have µ((aα)α∈I) =∑
µ(iα(aα)). In order to make the diagram commute for all α ∈ I, we need

µ ◦ iα = µα and so we see that µ has to be uniquely given by the formula
µ((aα)α∈I) =

∑
µα(aα). This shows uniqueness.

In order to verify existance of a homomorphism µ we need to verify that
the formula µ((aα)α∈I) =

∑
α∈I µα(aα) actually defines a homomorphism. It

is clear that it is a function ⊕α∈IAα → A. On the other hand

µ((aα) + (bα)) = µ((aα + bα)) =
∑

α∈I

µα(aα + bα) =
∑

α∈I

(µα(aα) + µα(bα))

By the associativity and commutativity of A, we may rearrange this last
sum as

∑
α∈I µα(aα)+

∑
α∈I µα(bα) = µ((aα))+µ((bα)) and thus µ is indeed

a homomorphism. This proves existance. However do note that this only
worked because A was an Abelian group also!

The rest of the proposition is a rephrasing of the diagram property.

We end this section with some basic properties of direct sums of Abelian
groups:
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Proposition 1.7. Let {Aα}α∈I and {Bα}α∈I be two collections of Abelian
groups indexed by the set I such that Bα ≤ Aα for all α ∈ I.

Then ⊕α∈IBα ≤ ⊕α∈IAα and furthermore

⊕α∈IAα/ ⊕α∈I Bα
∼= ⊕α∈I(Aα/Bα).

Proof. First note as we are dealing with Abelian groups, all subgroups are
always normal. It is clear that ⊕α∈IBα ≤ ⊕α∈IAα. Let φα : Aα

// //Aα/Bα

be the canonical quotient epimorphism with kernel Bα for all α ∈ I.
Define µ : ⊕α∈IAα → ⊕α∈I(Aα/Bα) by µ((aα)α∈I) = (φα(aα))α∈I for all

(aα)α∈I ∈ ⊕α∈IAα. It is easy to check that µ is a homomorphism with the
stated codomain and that it is in fact an epimorphism as each φα is.

Finally it is also easy to check that ker(µ) = ⊕α∈IBα and so the first
isomorphism theorem shows that µ induces an isomorphism between
⊕α∈IAα/ ⊕α∈I Bα and ⊕α∈I(Aα/Bα).

Proposition 1.8. Let 0 denote the trivial Abelian group of order 1 and let
σ ∈ Σn be a fixed permutation. Then:
(a) A ⊕ 0 ∼= A for all Abelian groups A.
(b) If A1, . . . , An are Abelian groups then

A1 ⊕ A2 ⊕ · · · ⊕ An
∼= Aσ(1) ⊕ Aσ(2) ⊕ · · · ⊕ Aσ(n).

Thus for example we have A⊕B ∼= B ⊕A in general for any Abelian groups
A, B.
(c) For any three Abelian groups A, B and C we have

(A ⊕ B) ⊕ C ∼= A ⊕ B ⊕ C ∼= A ⊕ (B ⊕ C).

Proof. For (a), it is a simple check to show that µ : A ⊕ 0 → A given by
µ((a, 0)) = a for all a ∈ A is the desired isomorphism.
For (b), it is a simple check to show that λ : A1⊕· · ·⊕An → Aσ(1)⊕· · ·⊕Aσ(n)

given by λ((a1, . . . , an)) = (aσ(1), . . . , aσ(n)) is the desired isomorphism.
For (c), the isomorphisms are easily verified to be given by

((a, b), c) ↔ (a, b, c) ↔ (a, (b, c))

for all a ∈ A, b ∈ B and c ∈ C.
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2 Free Abelian Groups

Just as the concept of basis is important in the study of real vector spaces in
linear algebra, it is equally useful to consider Abelian groups which possess
a “basis”. However of course in an Abelian group A, there is generally no
concept of scalar multiplication with an arbitrary real number. However as
nx is defined for x ∈ A, n ∈ Z, we have the concept of multiplication with
an integer. This motivates the next definition:

Definition 2.1 (Z-basis). A Z-basis for an Abelian group A is a subset
X ⊂ A with the following properties:
(1) < X >= A i.e., every a ∈ A may be written as a =

∑
x∈X nxx where

nx 6= 0 for only finitely many x ∈ X.
(2) X is Z-independent i.e., for any collection of integers {nx}x∈X such that
only finitely many are nonzero we have

∑

x∈X

nxx = 0 =⇒ nx = 0 for all x ∈ X.

Example 2.2. Consider an arbitrary direct sum of integers, ⊕α∈IZ. For
each β ∈ I, let êβ ∈ ⊕α∈IZ be the element with βth component 1 and all
other components 0. It is a simple exercise to verify that {êα}α∈I is a Z-
basis for ⊕α∈IZ. This is called the canonical Z-basis for ⊕α∈IZ.

Thus for example the set {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a Z-basis for Z
3 =

Z ⊕ Z ⊕ Z.

The next proposition shows that the previous example pretty much covers
all the cases of Abelian groups which have a Z-basis!

Proposition 2.3 (Abelian groups with a Z-basis). Let A be an Abelian
group with basis X. Then every element a ∈ A can be written uniquely as
a =

∑
x∈X nxx where all but finitely many of the nx ∈ Z are zero.

The map Θ : ⊕x∈XZ → A given by Θ((nx)x∈X) =
∑

x∈X nxx is an iso-
morphism of Abelian groups which takes the canonical basis element êx to x
for all x ∈ X.

Proof. It is easy to check that the map Θ given in the statement of the
proposition is a homomorphism of groups. It is onto by property (1) of a
Z-basis and it has trivial kernel by property (2) of a Z-basis. Thus it is an
isomorphism and it is easy to check that Θ(êx) = x for all x ∈ X.

6



Since Θ is a bijection, it follows that each a ∈ A can be written as
a =

∑
x∈X nxx for a unique set of integers {nx}x∈X of which only finitely

many are nonzero. This completes the proof.

Definition 2.4 (Free Abelian group on X). The group ⊕x∈XZ is called
the free Abelian group on X. It has a canonical basis {êx|x ∈ X} which is in
bijective correspondence with X.

We have seen that an Abelian group A with Z-basis X is isomorphic to
⊕x∈XZ under an isomorphism that takes a =

∑
x∈X nxx ∈ A to (nx)x∈X ∈

⊕x∈XZ. The integer nx is called the component of a with respect to the basis
element x.

The following theorem shows that Z-basis share common important traits
with basis that occur in linear algebra:

Theorem 2.5 (Free Property of Free Abelian Groups). Let X be a
set and ⊕x∈XZ be the free Abelian group on X and let i : X → ⊕x∈XZ be the
function defined by i(x) = êx.

If A is an Abelian group and f : X → A is any function, then there exists
a unique homomorphism f̂ : ⊕x∈XZ → A that makes the following diagram
commute:

⊕x∈XZ ___ f̂ //___ A

X

i
ccFFFFFFFFF f

@@��������

The homomorphism f̂ is given by f̂((nx)x∈X) =
∑

x∈X nxf(x). Thus if

the set {f(x)|x ∈ X} generates A then f̂ is an epimorphism.
Finally if we let HomSet(X, A) denote the set of all functions from X to

A we see that there is a natural bijection

HomSet(X, A) ↔ Hom(⊕x∈XZ, A)

given by f ↔ f̂ .

Proof. Since i(x) = êx then we may write (nx)x∈X =
∑

x∈X nxi(x) for all

(nx)x∈X ∈ ⊕x∈XZ. Any homomorphism f̂ making the diagram in the state-
ment of the theorem commute, would then have:

f̂((nx)x∈X) =
∑

x∈X

nxf̂(i(x)) =
∑

x∈X

nxf(x).
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This shows the uniqueness of f̂ and that it would be defined by the formula
f̂((nx)x∈X) =

∑
x∈X nxf(x).

It is a simple check using that A is Abelian, that f̂ defined in this way is
indeed a homomorphism which proves existance.

The rest of the Theorem is a rephrasing of the diagram.

This yields the following important corollary!

Corollary 2.6 (Abelian groups are quotients of free Abelian groups).
Let A be an Abelian group and X a set of generators for A (We could take
X = A for example). Then there is an epimorphism f̂ : ⊕x∈XZ → A, and
thus A is a quotient of a free Abelian group.

Let Z
n = Z⊕· · ·⊕Z denote the n-fold direct sum of Z with itself. If A is

finitely generated, generated by n generators then A ∼= Z
n/H where H ≤ Z

n.

Proof. For the first part we let f : X → A be the inclusion map f(x) = x for
all x ∈ X and apply Theorem 2.5 to get an epimorphism f̂ : ⊕x∈X Z // //A .

In the case that |X| = n then clearly ⊕x∈XZ is isomorphic to Z
n and so

we get an epimorphism Z
n // //A with kernel H say. The first isomorphism

theorem then shows us that A ∼= Z
n/H .

From the previous corollary, it follows that to classify all the finitely
generated Abelian groups, we need only classify the subgroups H of Z

n and
their corresponding quotients groups.

Before we do this, let us show that the cardinality of a basis is an invariant
of a free Abelian group.

Theorem 2.7 (Any two basis for a Free Abelian group have the
same cardinality). Let A be an Abelian group and let X and Y be two
Z-basis for A. Then there is a bijection from X to Y i.e., X and Y have the
same cardinality.

In particular if n, m are nonnegative integers with Z
m ∼= Z

n then n = m.

Proof. The two Z-basis sets for A set up an isomorphism

⊕x∈XZ ∼= A ∼= ⊕y∈Y Z.

Under this isomorphism the subgroup 2A = {2a|a ∈ A} has induced isomor-
phisms

⊕x∈X2Z ∼= 2A ∼= ⊕y∈Y 2Z.
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By Proposition 1.7 we have

⊕x∈XZ/2Z ∼= A/2A ∼= ⊕y∈Y Z/2Z.

In particular there is a bijection between the sets ⊕x∈XZ/2Z and ⊕y∈Y Z/2Z.
If |X| < ∞ then | ⊕x∈X Z/2Z| = 2|X|. Thus | ⊕y∈Y Z/2Z| is also finite

and so |Y | < ∞ and 2|Y | = 2|X| which yields |X| = |Y | as desired.
So it only remains to consider the case |X| = |Y | = ∞.
Let Pfinite(X) = {S ⊂ X||S| < ∞} be the set of finite subsets of X. Then

there is a bijection Θ : Pfinite(X) → ⊕x∈XZ/2Z given by Θ(S) = (nx)x∈X

where nx ∈ Z/2Z and nx = 1̄ ↔ x ∈ S.
The bijection between ⊕x∈XZ/2Z and ⊕y∈Y Z/2Z thus induces a bijec-

tion between Pfinite(X) and Pfinite(Y ) and so these two sets have the same
cardinality. However for infinite sets X we have Pfinite(X) has the same car-
dinality as X (See Hungerford) and so this shows X and Y have the same
cardinality in this case as desired.

We may now define

Definition 2.8 (Rank of a Free Abelian group). If A is a free Abelian
group with Z-basis X. The rank of A is defined to be the cardinality of X.
Thus any free Abelian group of rank n is isomorphic to Z

n.

There are some properties of Z-basis which are not similar to those in
linear algebra - the next example emphasizes these:

Example 2.9 (Basis for Z
1). Since Z is a free Abelian group of rank 1, the

previous theorem shows that every basis for Z has cardinality 1. Since the
only cyclic generators of Z are ±1 we have that the only basis for Z are {1}
and {−1}.

Thus note that {2, 3} is a generating set for Z which does not contain a
Z-basis of Z as a subset.

Similarly note that {2} is a Z-independent subset of Z which cannot be
extended to a Z-basis of Z.

So in these two respects, Z-basis are different than basis in vector spaces.

We will now classify the subgroups of Z
n after a preliminary example:
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Example 2.10. We have previously seen that any nontrivial subgroup H of
Z

1 = Z is of the form dZ for a nonnegative integer d ≥ 1 and is hence itself
free Abelian of rank 1 with basis {d}. This led to the classification of all
one-generated Abelian groups as the cyclic groups Z or Z/dZ for d ≥ 1.

Now picture the group Z
2 as the subgroup of the Euclidean plane (R2, +)

consisting of vectors with integer entries. Then H = {(2s, 3t)|s, t ∈ Z} is a
subgroup of Z

2.
Notice if {ê1, ê2} is the canonical basis for Z

2 then {2ê1, 3ê2} is a Z-basis
for H and so H itself is abstractly isomorphic to Z

2. In fact the isomorphism
Θ : H → Z

2 is given by Θ((2s, 3t)) = (s, t) for all s, t ∈ Z.
If T = {(s, s)|s ∈ Z} then T ≤ Z

2 and T is free Abelian of rank 1 with
basis {(1, 1)}. So T is (abstractly) isomorphic to Z

1.

Theorem 2.11 (Structure of subgroups of Z
n). Let H 6= (0) be a non-

trivial subgroup of Z
n. Then there exists a Z-basis {ẑ1, . . . , ẑn} of Z

n and
integers 1 ≤ d1|d2|d3| . . . |dr for some 1 ≤ r ≤ n such that {d1ẑ1, . . . , drẑr} is
a Z-basis for H.

Proof. We prove this by induction on n. For n = 1 we have proven this
before so assume n > 1 and that the theorem is proven for all free Abelian
groups of smaller rank.

Let {ê1, . . . , ên} be the canonical basis of Z
n. Since H 6= (0), there is a

nonzero element h ∈ H . If we write h =
∑n

i=1 niêi then at least one ni is a
nonzero integer and hence is either positive or negative. If all the components
are nonpositive, then −h ∈ H has a positive component.

Thus we see that there is some element of H with a positive component
with respect to a Z-basis of Z

n. This motivates the following outlandish
definition!

Let d1 > 0 be the smallest positive integer than occurs as a component of
an element h ∈ H with respect to some Z-basis of Z

n. Since every nonempty
set of positive integers has a smallest element, d1 is well-defined.

In other words for any h ∈ H and any Z-basis {x̂1, . . . , x̂n} of Z
n if we

write h =
∑n

i=1 nix̂i then we have (ni > 0 =⇒ ni ≥ d1) for all 1 ≤ i ≤ n.
By the definition of d1, there exists a Z-basis {x̂1, . . . , x̂n} of Z

n and an
element h ∈ H such that h = d1x̂1 + s2x̂2 + . . . snx̂n. (Here we reorder the
basis if necessary to ensure d1 occurs as the first component.)

Now we perform the division algorithm and write sj = qjd1 + rj where
0 ≤ rj < d1 for j = 2, . . . , n. Plugging this into the expression for h above
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we find upon rearranging:

h = d1(x̂1 + q2x̂2 + · · ·+ qnx̂n) + r2x̂2 + . . . rnx̂n

= d1ŷ1 + r2ŷ2 + . . . rnŷn.

where {ŷ1, . . . , ŷn} is the Z-basis of Z
n given by ŷ1 = x̂1 + q2x̂2 + · · · + qnx̂n

and ŷk = x̂k for k = 2, . . . , n.
Since 0 ≤ rk < d1 for k = 2, . . . , n and d1 is the minimial positive

component of an element of H with respect to any Z-basis of Z
n we see that

r2 = r3 = · · · = rn = 0 and so h = d1ŷ1 ∈ H .
Thus we conclude that there is a Z-basis {ŷ1, . . . , ŷn} of Z

n such that
d1ŷ1 ∈ H .

Now < ŷ2, . . . , ŷn >= {a2ŷ2 + · · ·+ anŷn|ai ∈ Z} is clearly a free Abelian
group of rank n−1. Let T = H∩ < ŷ2, . . . , ŷn >. Thus by induction there is
a Z-basis of < ŷ2, . . . , ŷn > call it {ẑ2, . . . , ẑn} and 1 ≤ d2|d3| . . . |dr such that
{d2ẑ2, . . . , drẑr} is a Z-basis for T . Setting ẑ1 = ŷ1 we then have a Z-basis
{ẑ1, . . . , ẑn} of Z

n such that d1ẑ1 ∈ H and such that {d2ẑ2, . . . , drẑr} is a
Z-basis for T = H∩ < ẑ2, . . . , ẑn >.

Suppose h ∈ H and write h =
∑n

i=1 aiẑi. Write a1 = qd1 + r where
0 ≤ r < d1. Then h − qd1ẑ1 ∈ H as d1ẑ1 ∈ H and a simple computation
shows h − qd1ẑ1 = rẑ1 +

∑n

i=2 aiẑi. Again since 0 ≤ r < d1 and d1 is the
minimal possible positive component of an element of H we conclude r = 0.

Thus h−qd1ẑ1 ∈ H∩ < ẑ2, . . . , ẑn >= T and so h = qd1ẑ1+
∑r

i=2 qi(diẑi).
This shows that {d1ẑ1, d2ẑ2, . . . , drẑr} span H . This set is automatically Z-
independent as {ẑ1, . . . , ẑn} is Z-independent as it is a Z-basis for Z

n. Thus
we see that {d1ẑ1, . . . , drẑr} is a Z-basis for H with 1 ≤ d1 and d2|d3| . . . |dr.

In order to be finished it only remains to show d1|d2.
Well d1ẑ1 + d2ẑ2 ∈ H . Writing d2 = td1 + r′ for 0 ≤ r′ < d1 we find

d1(ẑ1 + tẑ2) + r′ẑ2 ∈ H . Thus r′ is a nonnegative component of an element
of H with respect to the Z-basis {ẑ1 + tẑ2, ẑ2, . . . , ẑn} of Z

n. Since r′ < d1

this forces r′ = 0 and so d2 = td1 and so d1|d2 as desired. Thus by induction
we are done!

This theorem has a few important corollaries:

Corollary 2.12. If H ≤ Z
n then H is free Abelian of rank r where 0 ≤ r ≤ n.
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Corollary 2.13. If A is a finitely generated Abelian group then A is a finite
direct sum of cyclic groups. More precisely there are integers k, s ≥ 0 and
integers 1 < s1|s2| . . . |sk such that

A ∼= Z
s ⊕ Z/s1Z ⊕ Z/s2Z ⊕ · · · ⊕ Z/skZ.

This is called the decomposition of A into invariant factors.

Proof. Since A is finitely generated, there exists an epimorphism from a free
Abelian group F of finite rank onto A.

Let H be the kernel of this epimorphism then A ∼= F/H .
However by Theorem 2.11 there is a Z-basis {ẑ1, . . . , ẑn} of F and integers

1 ≤ d1|d2| . . . |dr such that {d1ẑ1, . . . , drẑr} is a Z-basis for H .
Using this Z-basis we get an isomorphism Θ : F → Z

n which takes H
to d1Z ⊕ · · · ⊕ drZ ⊕ 0n−r. This induces an isomorphism of A ∼= F/H with
Z/d1Z ⊕ · · · ⊕ Z/drZ ⊕ Z

n−r. Finally we may drop 0 factors corresponding
to Z/1Z = 0 to get the form described in the statement of the corollary.

3 Finitely generated Abelian groups

We have seen that any finitely generated Abelian group is isomorphic to a
finite direct sum (product) of cyclic groups.

The next proposition is useful when it comes to regrouping the finite
factors in the direct sum in Corollary 2.13:

Proposition 3.1. Let n, m be positive integers such that gcd(n, m) = 1.
Then Z/nZ ⊕ Z/mZ ∼= Z/nmZ.

Thus if n = pα1

1 . . . pαk

k where p1 < · · · < pk are distinct prime numbers
we have

Z/nZ ∼= ⊕k
i=1Z/pαi

i Z.

Proof. The second part follows from repeated application of the first so we
only prove the first part.

Suppose s(1, 1) = (s, s) = (0, 0) in Z/nZ ⊕ Z/mZ. Then n|s and m|s.
Thus lcm(m, n)|s. Since lcm(m, n) = mn

gcd(m,n)
= mn. This shows that

o((1, 1)) = mn = |Z/nZ ⊕ Z/mZ|. Thus we conclude that this group is
cyclic generated by (1, 1) and so Z/nZ ⊕ Z/mZ ∼= Z/nmZ.

12



Example 3.2 (Caution!). It follows from the previous proposition that
Z/2Z ⊕ Z/3Z ∼= Z/6Z. However the reader is warned that if the numbers
are not relatively prime this fails. For example Z/2Z⊕Z/2Z 6∼= Z/4Z as the
second group has elements of order 4 but the first group does not!

Using Proposition 3.1 in Corollary 2.13 we get the following corollary:

Corollary 3.3. If A is a finitely generated Abelian group then there exist
integers s, r ≥ 0 and prime numbers p1 ≤ p2 ≤ · · · ≤ pr together with
positive integers α1, . . . , αr such that

A ∼= Z
s ⊕ Z/pα1

1 ⊕ Z/pα2

2 ⊕ · · · ⊕ Z/pαk

k

with the property that if pi = pi+1 then αi ≤ αi+1.
This is called the decomposition of A into elementary divisors.

Both the decomposition of A into invariant factors and into elementary
divisors turns out to be unique. We will prove these with a sequence of
lemmas!

Lemma 3.4 (Number of Z’s is unique). Let A be an Abelian group such
that A ∼= Z

n ⊕ T where T is a finite Abelian group. Then Ator the subgroup
of torsion elements of A has Ator

∼= T and A/Ator
∼= Z

n.
Thus if T and S are finite Abelian groups then

Z
n ⊕ T ∼= A ∼= Z

m ⊕ S

implies
T ∼= Ator

∼= S

and
Z

n ∼= A/Ator
∼= Z

m.

Thus in particular n = m.

Proof. In Z
n ⊕ T it is clear that the subgroup of torsion elements is 0 ⊕ T ,

Thus under the isomorphism A ∼= Z
n ⊕ T we get an induced isomorphism

Ator
∼= 0 ⊕ T and hence A/Ator

∼= Z
n ⊕ T/0 ⊕ T . Thus Ator

∼= T and
A/Ator

∼= Z
n ⊕ 0 ∼= Z

n.
The other statements in the lemma directly follow from these. The final

conclusion that n = m follows as the final isomorphism shows that A/Ator is
a free Abelian group with both a basis of size m and one of size n.
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Lemma 3.4 shows that to show that the invariant factor and elementary
divisor decompositions of a finitely generated Abelian group are unique, it is
enough to consider finite Abelian groups. We do this next.

Definition 3.5. Given an Abelian group A and a prime p, we define

Ap = {a ∈ A|o(a) = pk for some k ≥ 0}.

We also define
A[p] = {a ∈ A|o(a) = 1 or p}.

It is easy to check that since A is Abelian, we have A[p] ≤ Ap ≤ A.
We also define pA = {pa|a ∈ A} and again it is easy to check that

pA ≤ A.

Lemma 3.6 (Working a prime at a time). Suppose A is a finite Abelian
group and A ∼= ⊕p∈P Tp where P is a set of primes and Tp is a finite Abelian
p-group for each p ∈ P .

Then Ap
∼= Tp for all p ∈ P .

If Sp is also a finite Abelian p-group for each p ∈ P , then

⊕p∈P Sp
∼= A ∼= ⊕p∈PTp

implies
Sp

∼= Ap
∼= Tp

for all p ∈ P .

Proof. Fix a prime q ∈ P , the elements of order a power of q in ⊕p∈PTp are
clearly 0 ⊕ Tq ⊕ 0. Thus under the isomorphism A ∼= ⊕p∈P Tp we have an
induced isomorphism Aq

∼= 0 ⊕ Tq ⊕ 0 ∼= Tq.
The rest of the lemma is a direct consequence of this.

Lemma 3.7. For any prime p and k ≥ 1 we have p(Z/pk
Z) = (pZ/pk

Z) ∼=
Z/pk−1

Z.

Proof. Consider the isomorphism Θ : pZ → Z given by Θ(pn) = n for
all n ∈ Z. For k ≥ 1, it is easy to check that this isomorphism restricts
to an isomorphism from pk

Z to pk−1
Z and hence induces an isomorphism

pZ/pk
Z ∼= Z/pk−1

Z which is what we desired to prove.
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If p is a prime and P is a finite Abelian p-group then Corollary 3.3 shows
that P ∼= Z/pα1Z ⊕ . . . Z/pαrZ for some r ≥ 0 and 1 ≤ α1 ≤ · · · ≤ αr. We
now show that this sequence of αj’s is uniquely determined by P .

Lemma 3.8 (Uniqueness of elementary divisors for Abelian p-groups).
Let p be a prime and A a finite Abelian p-group. Suppose

Z/pα1Z ⊕ · · · ⊕ Z/pαkZ ∼= A ∼= Z/pβ1Z ⊕ · · · ⊕ Z/pβsZ

where 1 ≤ α1 ≤ · · · ≤ αk and 1 ≤ β1 ≤ · · · ≤ βs with k, s ≥ 0.
Then k = s and αj = βj for all j.

Proof. We prove the lemma by induction on P . If |P | = 1 or p it is trivial so
assume |P | > p and the lemma is proven for all Abelian p-groups of smaller
order.

If Z/pα1Z⊕· · ·⊕Z/pαkZ ∼= A ∼= Z/pβ1Z⊕· · ·⊕Z/pβsZ then in particular
we have pα1+···+αk = pβ1+···+βs which yields

α1 + · · · + αk = β1 + · · · + βs.

The isomorphism above induces an isomorphism

p(Z/pα1Z) ⊕ · · · ⊕ p(Z/pαkZ) ∼= pA ∼= p(Z/pβ1Z) ⊕ · · · ⊕ p(Z/pβsZ).

and hence by Lemma 3.7 an isomorphism

Z/pα1−1
Z ⊕ · · · ⊕ Z/pαk−1

Z ∼= pA ∼= Z/pβ1−1
Z ⊕ · · · ⊕ Z/pβs−1

Z

Thus |pA| < |A| and hence by the induction hypothesis we can conclude
that the set αj’s and βj’s which are strictly bigger than one agree. (Note if
αj = 1 then the corresponding factor Z/pαj−1

Z = 0 and we cannot conclude
anything directly.)

However using the equation α1 + · · · + αk = β1 + · · · + βs we can now
conclude the number of αj which equal one is equal to the number of βj

which equal one and hence r = s and αj = βj for all j. Thus by induction,
we are done.

By Lemmas 3.4, 3.6 and 3.8, it follows that the decomposition of a finitely
generated Abelian group into elementary divisors is unique.

From this one can argue that the decomposition of a finitely generated
Abelian group into invariant factors is also unique. We do that next:
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Theorem 3.9 (Uniqueness of Decompositions). Let A be a finitely gen-
erated Abelian group A. Then A can be decomposed as:

A ∼= Z
s ⊕ Z/pα1

1 Z ⊕ · · · ⊕ Z/pαk

k Z

where s, k ≥ 0, p1 ≤ p2 ≤ · · · ≤ pk are primes, and αj are positive integers
such that pi = pi+1 implies αi ≤ αi+1. This elementary divisor decom-
position is unique in the sense that k, s, the pj’s and the αj’s are uniquely
determined from A.

A can also be decomposed as:

A ∼= Z
s ⊕ Z/s1Z ⊕ · · · ⊕ Z/srZ

where s, r ≥ 0 and 1 < s1|s2| . . . |sr. This invariant factor decomposition is
also unique in the sense that s, r and the sj’s are uniquely determined from
A.

Proof. We have already shown the existance of both decompositions and the
uniqueness of the elementary divisor decomposition so it remains only to
convince the reader of the uniqueness of the invariant factor decomposition.
Since s has been determined to be uniquely determined in this decomposition,
we only have to consider the case of a finite Abelian group A.

We will present a reversible algorithm that goes from the invariant factor
decomposition to the elementary divisor decomposition. It will then follow
that the invariant factor decomposition is unique as the elementary divisor
decomposition is.

Let A ∼= Z/s1Z ⊕ · · · ⊕ Z/srZ where r ≥ 1 and 1 < s1|s2| . . . |sr. Let
sr = pβ1r

1 . . . pβkr

k be the unique decomposition of sr into distinct primes
p1 < · · · < pk with βir ≥ 1 for each 1 ≤ i ≤ k.

Note since sj|sj+1|sr for all 1 ≤ j < r we may write sj = p
β1j

1 . . . p
βkj

k for
unique integers βij ≥ 0. Note sj |sj+1 gives βij ≤ βi,j+1 for all 1 ≤ i ≤ k.

By Propostion 3.1, it follows that A ∼= ⊕i,jZ/p
βij

i Z. Thus by the unique-
ness of the elementary divisor decomposition, the (nonzero) βij are deter-
mined. Thus the sj are determined and the invariant factor decomposition
is hence unique.
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