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1. Introduction

If p is a prime and A is an abelian group, then A is said to have exponent pn

at the prime p if pn annihilates the p torsion of A and it is the least such power. A
topological space X has exponent pn if if this is the least power which annihilates
the p torsion in all the homotopy groups of X.

The proof of the exact result for the homotopy exponent of an odd primary
Moore space is one which always made me feel uneasy. You know you are on
dangerous ground when you have trouble recalling why some of things you have
written are true. It was with some trepidation that I dealt with Brayton Gray’s
questions about this work. Some serious mistakes were found. But they were not
fatal, except for the 3-primary case. Modulo the 3-primary case, the proof has
survived this test and it has even improved under Brayton’s insightful questioning.
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2 JOSEPH NEISENDORFER

His questioning has led to a simplification and generalization of the main technical
result which I call the semi-splitting. I am very grateful to Brayton for bringing
this about.

In fact, Brayton’s suggestion of an improved semi-splitting has enabled me
to take advantage of a last gift to me from the late John Moore. I was sorting
through his old files of mathematical reprints when I found an old unpublished
reprint of mine which I had completely forgotten about. The combination of the
main idea of that reprint with the improved semi-splitting gives an upper bound for
the homotopy exponent of an odd primary Moore space which is within one factor
of p of the best possible. It applies even to the 3-primary case.

In summary, this paper will show that, when p is a prime greater than 3, pr+1

is the best possible homotopy exponent of a mod pr Moore space of dimension at
least 3. But pr+2 is an upper bound in the case of all odd primes.

Norman Steenrod once said to me: “If you are having trouble explaining some-
thing, it could be that you don’t understand it well enough.” I hope this paper
demonstrates that this is no longer true about this work.

Let us begin by reviewing some definitions and theorems.
An abelian group A is said to have exponent ≤ pn at a prime p if pn annihilates

the p− torsion in A. It is said to have exponent exactly pn if this is the least such
power. A topological space X is said to have homotopy exponent ≤ pn, respectively,
homotopy exponent exactly pn, if the direct sum of all of its homotopy groups,
equivalently the localiization of these homotopy groups at p, has this exponent.

For homotopy associative H− spaces X we say that X has geometric exponent
≤ pn if the power map

pn : X → X, x 7→ xn

is null homotopic. It has geometric exponent exactly pn if this is the least such
null homotopic power map. It is clear that geometric exponents imply that the
homotopy groups are p−torsion with the same or lesser homotopy exponents.

Note that, if X has a geometric exponent, then its loop space ΩX has the same
or lesser geometric exponent.

The reverse implication is not true. In fact, it is possible that ΩX has a
geometric exponent when an H−space X has none. This means that it might be
possible that a space X has a homotopy exponent but no iterated loop space ΩkX
has any geometric exponent.

Hence, given any space X we can ask the following questions at a prime p:
1. Does X have a homotopy exponent at a prime p and, if so, what is the least

such.
2. Does any iterated loop space ΩkX or a localization at p have a geometric

exponent. If so what is the least such power? And, do the geometric and homotopy
exponents coincide.

These questions are of particular interest in the cases of spheres, Moore spaces,
and their localizations. There are substantial differences between the prime 2 and
the odd primes.

The first such result is due to James [9] who showed that the odd dimen-
sional spheres S2n+1 have 2-primary homotopy exponents ≤ 4n. For n = 1, the
3−dimensional sphere, this result is best possible, that is, there are elements of or-
der 4 in the homotopy of S3 but no elements of order 8. In general, James showed
that the 2-primary homotopy exponent increases at most by a factor of 4 as one
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passes from S2n−1 to S2n+1. But, already for n = 2, this result is not best possible.
Selick [22] has shown that the 2-primary homotopy exponent increases by at most
a factor of 2 as one passes from S4n−1 to S4n+1. The 5−dimensional sphere has
2-primary homotopy exponent 8.

There is a conjecture of Barratt and Mahowald that the exact 2-primary ex-
ponent for S2n+1 is given by λ times the exact exponent for S2n−1 where λ is
either 2, 4, 2,or 1, depending on whether n is congruent to 0, 1, 2, or 3 modulo
4, respectively. For example, the 2-primary exponents for the homotopy groups of
S1, S3, S5, S7, S9, S11, . . . would be 1, 4, 8, 8, 16, 64, . . . . This result is not known to
be true although Mahowald by constructing homotopy classes had shown that, if
true, it is best possible. [11]

These results were given geometric form in a Princeton course by Moore who
showed that, when the 2n+ 1 connected cover S2n+1 < 2n+ 1 > is localized at 2,
then the 4n power map is null on the iterated loop space Ω2n+1(S2n+1 < 2n+1 >).
[23, 18]

All of the above 2-primary results were proved by study of Hopf invariants
and the EHP sequence. Toda studied Hopf invariants and introduced a new Hopf
invariant which enabled him to prove the odd primary analog of the results of
James: The spheres S2n+1 have homotopy exponent ≤ p2n at an odd prime p.
[26, 27, 28] Once again, Moore gave these results geometric form by showing that,
localized at an odd prime p, the iterated loop space Ω2n+1(S2n+1 < 2n+ 1 >) has
a null homotopic p2n power map.

Moore’s Princeton course led almost immediately to improvements in the odd
primary exponents of spheres, in fact to the best possible results. First, Selick
[21] in his thesis proved Barratt’s conjecture that the homotopy exponent of the 3-
dimensional sphere is p if p is an odd prime. Second, Cohen, Moore, and Neisendor-
fer [4, 3] generalized Selick’s result by showing that the homotopy exponent of
S2n+1 is pn at all primes greater than 3. Later, Neisendorfer [14] was able to show
that this was also true for the prime 3.

Gray [7] had already shown that the above results were best possible.
The odd primary results have the geometric form that the iterated loop space

Ω2n−1(S2n+1 < 2n+ 1 >) has a null homotopic pn power map localized at an odd
prime p. [18] In fact, this result is best possible in terms of the number of loops
since Ω2n−2(S2n+1 < 2n + 1 >), no matter how large the power of p, has no null
homotopic power maps localized at any prime p. This last result is a consequence
of the localization due to Bousfield and Dror-Farjoun.

Consider the special case of the above localization in which the mapM(Z[ 1
p ], 1)∨

BZ/pZ → ∗ is made into an equivalence. The effect of the Moore space M(Z[ 1
p ], 1)

is to insure that these localizations are complete and the effect of the classifying
space BZ/pZ is to insure that completions of finite complexes are local but con-
nected covers of them are usually not. [17, 18] This localization preserves products
and has the following property: Suppose Y is any connected cover of X where X
is either a finite complex or an iterated loop space of a finite complex and suppose
that X is simply connected and has at most torsion in π2(X). Then this localization

L(Y ) has the homotopy type of the p−completion X̂p.
Applying L to

Y = Ω2n−2(S2n+1 < 2n+ 1 >) = (Ω2n−2S2n+1) < 3 >
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shows that L(Y ) ' X̂p = the p-completion of Ω2n−2(S2n+1). Since L preservers
products this implies that, if Y had a null homotopic power map, the same would
be true for X̂p. But π3(X̂p) = Ẑp which is torsion free. Hence, neither Y nor X̂p

can have a null homotopic power map.
Scholium: Joe Roitberg coined the phrase 1 1

2 connected for a space which
is simply connected and has a torsion second homotopy group. The localization
functor does not produce the same results when we apply it to a connected cover
of a space which does not have a torsion second homotopy group, for example, to
a connected cover of the 2n− 1 fold loops on a 2n+ 1 dimensional sphere, or even
more simply, to a connected cover of S2. Note that S2 has the 3-connected cover

S2 < 3 >= S3. Thus, L(S2 < 3 >) = Ŝ3
p 6= Ŝ2

p. In these cases, π2 = Z is not
torsion, that is, neither the above iterated loop space nor S2 is 1 1

2 connected. This
localization property is based on a lemma of Zabodsky and on Miller’s theorem,
that is, on the Sullivan conjecture. [12] It is a remarkable coincidence that Miller’s
theorem gives exactly the range of applicability to prove that the 2n− 2 fold loop
space has no geometric exponent at any prime.

The early work on exponents of homotopy groups of spheres focused on Hopf
invariants. The work of Cohen, Moore, and Neisendorfer focused on Samelson
products and the relationship between spheres and the p-torsion Moore spaces
Pn(pr) = Sn−1∪pr en with one nontrivial integral cohomology group isomorphic to
Z/prZ in dimension n.. [4, 3, 18, 20] In fact, their work on homotopy exponents
was originally focused on the homotopy groups of odd primary Moore spaces. In so
doing, it was discovered that these odd primary Moore spaces were a key to under-
standing the odd primary homotopy theory of spheres. At first it was discovered, if
p is an odd prime and n ≥ 3, then the mod pr Moore spaces Pn(pr) had infinitely
many elements of order pr+1. [4] (The original arguments were in fact valid only
for primes greater than 3 but these results were extended to all odd primes in [14].)
In [5] it was shown that the odd primary Moore spaces Pn(pr) with n ≥ 3 had a
homotopy exponent no greater than p2r+1. In [16], the homotopy exponent pr+1

was achieved, except for a mistake which was easily repaired unless p = 3.. At least
for p > 3, this was the best possible result in several ways. For p = 3 we at least
have the upper bound of pr+2.

One, the restriction to dimensions n ≥ 3 was necessary since the universal cover
of P 2(pr) has the homotopy type of a bouguet of pr− 1 copies of the 2-dimensional
sphere, Unless pr = 2, the Hilton-Milnor theorem shows that this space has no
exponent at any prime.

Two, when p > 3, the fact that the homotopy exponent is exactly pr+1 is
a consequence of the existence of infinitely many elements of order pr+1 in the
homotopy groups of Pn(pr) with p odd and n ≥ 3.

Three, it was shown that the double loop space Ω2Pn(pr), n ≥ 3, p > 3, has a
geometric exponent of pr+1. When p = 3 this double loop space has null homotopic
pr+2 power map. The single loop space ΩPn(pr) has no geometric exponent what-
ever, that is, it has no null homotopic power maps. This is a consequence of the
fact that, no matter how large s is, the power maps ps : ΩPn(pr) → ΩPn(pr) do
not induce zero in mod p homology. [5] Thus, when p > 3 this geometric exponent
is best possible both in the power required and in the number of loops required.
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On the other hand, the situation for the homotopy exponents of 2-primary
Moore spaces is not so well understood. Not everything is known about the ex-
istence or non-existence of these exponents. But Theriault [25] has shown that
2r+1π∗(Pm(2r)) = 0 for m ≥ 4, r ≥ 6. And Cohen [2] has shown that this result is
best possible in this case. For 3 ≤ r ≤ 5 Theriault has shown that 2r+2 is an upper
bound for the homotopy exponent and for r = 2 an upper bound is 32. But it is
not known whether the mod 2 Moore space Pm(2) has any homotopy exponent.

Michael Barratt has an unproven conjecture which would resolve these issues
by establishing a connection between the additive order of a double suspension and
the multiplicative order of its double loop space. He conjectured that: Let p be any
prime. If Σ2X is a double suspension with pr times the identity null homotopic,
then the multiplicative power map pr+1 is null homotopic on the double loop space
Ω2Σ2X.

2. Tools for odd primary exponent theory

A starting point for odd primary exponent theory can be found in the papers
[4, 3], the book [18], or in the survey article [20]. We also note that all this can
be extended to the prime 3 by [14]. In fact, since the Jacobi identity remains valid
for Samelson products in homotopy groups with mod 3r coefficients with r ≥ 2,
the methods are valid without change for mod 3r Moore spaces with r ≥ 2 . The
case of the mod 3 Moore spaces are more subtle since the Jacobi identity fails for
the mod 3 coefficients. But, in the end, it can be made to work.

On the other hand, the problem with the proof of the homotopy exponent of a
3 primary Moore space has nothing to do with the failure of the Jacobi identity. It
has to do with the lack of homotopy associativity in the H-space structure of the
fibre of the degree 3r map and occurs as far as we know for all r ≥ 1.

Scholium: The reference for the properties of Samelson products with 3-primary
coefficients is [19]. Unfortunately the published version contains a mistake which
was pointed out to me by Brayton Gray and subsequently corrected in the version
which appears on my website.

First of all, we note that it is sufficient in odd primary exponent theory for
both spheres and Moore spaces to restrict to the odd dimensional case since we
have the two splitting theorems:

Theorem 2.1. Serre: Localized at an odd prime, there is a homotopy equiva-
lence

S2n+1 × ΩS4n+3 ' ΩS2n+2.

Theorem 2.2. [4] If p is an odd prime and

S2n+1{pr} → S2n+1 pr−→ S2n+1

is a fibration sequence up to homotopy, then there is a homotopy equivalence

S2n+1{pr} × Ω
∨
k≥0

P 4n+2kn+3(pr) ' ΩP 2n+2(pr).

That is, we have split fibration sequences up to homotopy

ΩS4n+3 → ΩΣS2n+1 → S2n+1
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and

Ω
∨
k≥0

P 4n+2kn+3(pr)→ ΩΣP 2n+1(pr)→ S2n+1{pr}

where the projection maps of these fibrations are the multiplicative extensions of the
respective maps S2n+1 → S2n+1 and P 2n+1(pr)→ S2n+1{pr}. In both of the above
theorems, the left hand loop factors are mapped to the right by the multiplicative
extensions of the respective Samelson products [ι, ι] and the iterated adk(µ)([ν, ν]
where

ι ∈ π2n(ΩS2n+2), ν ∈ π2n+1(ΩP 2n+2(pr);Z/prZ), µ ∈ π2n(ΩP 2n+2(pr);Z/prZ)

are generators of these homotopy groups.
In both cases the multiplicative extensions are the same as the looping of the

corresponding adjoint Whitehead products. And in both cases the left hand product
spaces are mapped to the right by multiplying maps of the individual factors.

Scholium: When p is an odd prime, we know that the base spaces in the
above two fibrations sequences are both homotopy commutative H-spaces. When
p > 3, we know that they are also homotopy associative. [1, 15]. It follows
that multiplicative extensions into these spaces exist and, since Samelson products
vanish in the base spaces, it is clear that any Samelson product into the total spaces
of these fibrations factors through the respective fibres, as do their multiplicative
extensions. This is an important technical point. When p > 3, the total spaces
of these fibrations modulo loops on Whitehead products are the same as the base
spaces.

The odd dimensional theory for odd primary Moore spaces starts with the
analysis of the fibration sequence of the pinch map F 2n+1{pr} → P 2n+1(pr) →
S2n+1. The main results of [4, 3] are the description of the commutative diagrams
(localized at p) below in which the rows and columns are all loop maps and fibration
sequences (as always, up to homotopy):

ΩE2n+1{pr}) → ΩP 2n+1(pr) → ΩS2n+1{pr}
↓ ↓= ↓

ΩF 2n+1{pr} → ΩP 2n+1(pr) → ΩS2n+1

↓ ↓ ↓ Ωpr

Ω2S2n+1 → PΩS2n+1 → ΩS2n+1.

The bottom row is just the sequence of the path fibration and the right column is
the loop of the defining fibration for the fibre of the degree pr map on a sphere,
The most important result is splitting theorem that identifies the left hand column
as a fibration sequence:

Theorem 2.3. In the above diagram the left hand column is the fibration se-
quence

ΩΣ
∨
α

Pnα(pr)×Πr+1 × C(n)→ ΩΣ
∨
α

Pnα(pr)×Πr+1 × S2n−1 → Ω2S2n+1

which is the result of multiplying the total space and fibre in the fibration sequence

of the double suspension C(n)→ S2n−1 Σ2

−−→ ΩS2n+1 by the space ΩΣ
∨
α P

nα(pr)×
Πr+1. The map ΩΣ

∨
α P

nα(pr) → ΩP 2n+1(pr) is a multiplicative extension of
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Samelson products. The space Πr+1 = Πk≥1S
2pkn−1{pr+1} is an infinite product

of fibres of degree pr+1 maps on spheres.

This is important enough that it deserves to be expanded below in the diagram
in which all rows and columns are fibration sequences:

ΩΣ
∨
α P

nα(pr)×Πr+1 × C(n) → ΩP 2n+1(pr) → ΩS2n+1{pr}
↓ ↓= ↓

ΩΣ
∨
α P

nα(pr)×Πr+1 × S2n−1 → ΩP 2n+1(pr) → ΩS2n+1

↓ ↓ ↓ Ωpr

Ω2S2n+1 → PΩS2n+1 → ΩS2n+1.

We recommend the survey article [20] as the quickest introduction to the above
results which we will not prove here.

Scholium: If one extends the above diagrams to the left by fibration sequences
in the standard way, then one gets almost immediately the factorization

Ω2pr : Ω2S2n+1 πr−→ S2n−1 Σ2

−−→ Ω2S2n+1

where πr = π ◦ ∂ : Ω2S2n+1 → S2n−1 is the composition of the connecting mor-
phism in the fibration sequence with the projection on the sphere factor in the
product. Taking r = 1 gives that p times the homotopy is in the image of the
double suspension, which is a strong form of the odd primary exponent theorem
for the homotopy groups of spheres.

3. Decompositions of suspensions into bouquets

Perhaps the simplest decomposition of a suspension into a bouquet is the de-
composition of the suspension of a product of two spaces:

Σ(X × Y ) ' ΣX ∨ ΣY ∨ Σ(X ∧ Y ).

Iteration of this gives that Σ(X1 × X2 × · · · × Xk) splits into a bouquet for
which the “top” piece is Σ(X1 ∧X2 ∧ · · · ∧Xk).. The James decomposition [8] of
the suspension of the loop suspension is an immediate consequence of this, that is:

Theorem 3.1. James: ∨
kgeq1

ΣX∧k ' ΣΩΣX

for all connected spaces X.

Proof. Take the suspension map, the adjoint of the identity, Σ : X → ΩΣX,
and multiply it by itself k times to get maps X×X×· · ·×X → ΩΣX. Now suspend
these maps and restrict to the top piece of the bouquet decomposition. Then add
them up to get a map ∨

k≥1

ΣXk → ΣΩΣX.

By the Bott-Samelson theorem this is a homology equivalence with all field co-
efficients, hence, it an integral homology equivalence of simply connected spaces.
Hence it is a weak homotopy equivalence. �
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Scholium: Since we are in the category of spaces with the homotopy type of
a CW complex, we can conclude that homology equivalences of simply connected
spaces are not just weak equivalences but actually homotopy equivalences. [13] Or
we can just work in the category of simplicial sets.

For an odd primary Moore spaces we have [18]:

Lemma 3.2. If p is an odd prime, there is a homotopy equivalence

Pn(pr) ∧ Pm(pr) ' Pn+m−1(pr) ∨ Pn+m(pr).

Combining this with the James decomposition gives:

Corollary 3.3. If p is an odd prime and X is a bouquet of mod pr Moore
spaces with r fixed, then ΣΩΣX is homotopy equivalent to a bouquet of mod pr

Moore spaces. In particular, the mod pr Hurewicz map is surjective.

Now suppose that X and Y are both bouquets of mod pr Moore spaces with p
an odd prime and with r fixed. Then the following is true:

Theorem 3.4. Given a map f : ΩΣY → ΩΣX which is a mod pr homology
monomorphism, there is a space W and a map g : W → ΣΩΣX such that

Σf ∨ g : ΣΩΣY ∨W → ΣΩΣX

is a homotopy equivalence.

Proof. Over the ring Z/prZ, any free module is projective [10] and injective
[6]. Hence, if B ⊂ A is a free submodule of a free module, there is a complementary
free module C such that A = B ⊕ C.

We apply this to the map induced in mod pr homology by the suspension
Σf. Note that the mod pr homologies of the domain and range are both acyclic
with respect to the r − th Bockstein differential βr associated to the short exact
coefficient sequence 0→ Z/prZ → Z/p2rZ → Z/prZ → 0. Hence, the complement
of the image is also acyclic with respect to βr. Therefore, the complement has an
acyclic basis, that is, a basis consisting of pairs xα and βrxα. Since the mod pr

Hurewicz map is surjective, we can pick maps gα : Pmα(pr) → ΣΩΣX such that
gα∗(eα) = xα where eα is a generator of the mod pr homology of Pmα(pr) in the
top dimension mα = the dimension of xα.

Setting W =
∨
α P

mα(pr) gives us a map g defined on W so that

Σf ∨ g : ΣΩΣY ∨W → ΣΩΣX

is a mod pr homology isomorphism. Since all the spaces are bouquets of mod pr

Moore spaces, it follows easily that this map is an isomorphism in integral homology
between simply connected spaces. Hence it is a weak equivalence. �

We conclude this section with

Theorem 3.5. Let p be any prime and let Sm{pr} be the fibre of the degree pr

map pr : Sm → Sm. Then there is a homotopy equivalence∨
k≥0

Pm+k(m−1)+1(pr)→ ΣSm{pr}.
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Proof. The first right translate of the defining fibration sequence is the fi-
bration sequence ΩSm → Sm{pr} → Sm which is totally nonhomologous to zero
mod pr and such that the homology of the total space is a module via the action
of the fibre ΩSm. Hence, H(Sm{pr};Z/prZ) is a free H(ΩSm;Z/prZ) = T (ιm−1)
module on H(Sm : Z/prZ) =< 1.em > . That is,

H(Sm{pr};Z/prZ) =< 1, ι, e, ι2, eι, . . . , ιk, eιk−1, · · · >

with dimension ι = m−1, dimension e = m, and r-th Bockstein being the derivation
given by βrι = 0, βre = ι.

Now let f : Pm(pr) → Sm{pr} be a map which is mod pr homology isomor-
phism in dimensions m− 1 and m. That is, f hits ι, e in mod pr homology.

Restricting the action of the fibre to Sm−1 ⊂ ΩSm and iterating this action k
times gives maps Sm−1 × · · · × Sm−1 × Pm(pr) → Sm{pr}. Suspend these maps
and restrict to the top bouquet piece to get maps

Σ(Sm−1 ∧ · · · ∧ Sm−1 ∧ Pm(pr)) = Pm+k(m−1)+1(pr)→ ΣSm{pr}.

Adding these maps together gives the required homotopy equivalence. �

4. Splittings which lead to exponents for odd primary Moore spaces

For the remainder of this paper, p will always be an odd prime.
The following splitting result requires no computation and is the key to estab-

lishing a homotopy exponent for odd primary Moore spaces.

Theorem 4.1. Suppose that f : ΩY → X is such that the suspension Σf :
ΣΩY → ΣX has a left inverse g : ΣX → ΣΩY , that is g is a retraction, g ◦Σf ' 1.
Then f has a retraction h, h ◦ f ' 1.

Proof. It is an easy exercise in adjoint functors that the composition

h : X
Σ−→ ΩΣX

Ωg−−→ ΩΣΩY
Ω eval−−−−→ ΩY

is a left inverse. �

Corollary 4.2. Suppose that f : ΩY → ΩX is a mod pr homology monomor-
phism where X and Y are both bouquets of mod pr Moore spaces. Then f has a left
inverse, that is, there is a retraction g : ΩX → ΩY, g ◦ f ' 1.

Proof. Apply the above theorem and the theorem in the previous section. �

Scholium: When I tried to explain the above result to John Moore by a very
complicated argument using Hopf invariants, he said to me: “If it is true, then it
cannot be that complicated.” And he proceeded to immediately invent the argument
you have just seen. I was amazed!

In the CMN splittings, the maps

ΩΣ
∨
α

Pnα(pr)→ ΩE2n+1{pr} → ΩF 2n+1{pr} → ΩP 2n+1(pr)

are the loopings of Whitehead product maps

Σ
∨
α

Pnα(pr)→ E2n+1{pr} → F 2n+1{pr} → P 2n+1(pr).
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More precisely, these maps are canonical compressions of the Whitehead product
maps, respectively, the H-based Whitehead product into E2n+1{pr}, the relative
Whitehead product into F 2n+1{pr}, and the usual mod pr Whitehead product
into P 2n+1(pr). Details for the Samelson products which are adjoint forms of these
Whitehead products can be found in [18, 20]. The above corollary says that the
following fibration row sequences which define the spaces

V 2n+1{pr}, W 2n+1{pr|}, T 2n+1{pr|}
are all split:

ΩΣ
∨
α P

nα(pr) → ΩE2n+1{pr} → V 2n+1{pr} → Σ
∨
α P

nα(pr) → E2n+1{pr}
↓= ↓ ↓ ↓= ↓

ΩΣ
∨
α P

nα(pr) → ΩF 2n+1{pr} → W 2n+1{pr} → Σ
∨
α P

nα(pr) → F 2n+1{pr}
↓= ↓ ↓ ↓= ↓

ΩΣ
∨
α P

nα(pr) → ΩP 2n+1(pr) → T 2n+1{pr} → Σ
∨
α P

nα(pr) → P 2n+1(pr)

In more detail, the product splittings below are all compatible:

ΩE2n+1{pr} ' ΩΣ
∨
α P

nα(pr)× V 2n+1{pr}
↓ ↓

ΩF 2n+1{pr} ' ΩΣ
∨
α P

nα(pr)×W 2n+1{pr}
↓ ↓

ΩP 2n+1(pr) ' ΩΣ
∨
α P

nα(pr)× T 2n+1{pr}
In the diagram below the rows and the right hand length 3 rows are fibration
sequences:

Πr+1 × C(n) ' V 2n+1{pr} → T 2n+1{pr} → ΩS2n+1{pr}
↓ ↓ ↓ ↓

Πr+1 × S2n−1 ' W 2n+1{pr} → T 2n+1{pr} → ΩS2n+1

↓ ↓ ↓ ↓ Ωpr

Ω2S2n+1 = Ω2S2n+1 → PΩS2n+1 → ΩS2n+1

We refer to [5, 16, 18] for details on these fibration sequences and their com-
patibility. It is based on the expansion of a 2 × 2 commutative cube into a larger
cube with rows and columns fibration sequences.

Hint: Expand a cube with path spaces at coordinates (0, 0, 0), (0, 1, 0), Moore
spaces at (1, 0, 1), (1, 1, 1), loops on a bouquet of Moore spaces at (0, 0, 1), (0, , 1, 1),
a sphere at (1, 0, 0) and a fibre of degree pr map at (1, 1, 0). Vertical maps go down
and horizontal maps go to the left.

The point of the above diagram is that it is a cut down version of the original
fibration diagrams of CMN in which the space ΩP 2n+1(pr) has been replaced by the
“core” T 2n+1{pr} of the loops on a Moore space, that is, the factor ΩΣ

∨
α P

nα(pr)
has been excised.

Remark: Consider the maps of fibration sequences:

Πr+1 × C(n) → ΩE2n+1{pr} → V 2n+1{pr}
↓ ↓ ↓

Πr+1 × S2n−1 → ΩF 2n+1{pr} → W 2n+1{pr}
↓ ↓ ↓

Ω2S2n+1 =−→ Ω2S2n+1 =−→ Ω2S2n+1
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The composite in the middle row is a mod p homology equivalence since the fi-
bration sequence ΩΣ

∨
α P

nα(pr))→ ΩF 2n+1{pr} →W 2n+1{pr} has a section and
therefore

H(Πr+1 × C(n)) ∼= Z/pZ ⊗H(ΩΣ
∨
α P

nα (pr)) HΩF 2n+1{pr} ∼= H(W 2n+1{pr}).

By the comparison theorem, the composite in the top row is also a mod p homology
equivalence. Since all the spaces are localized and finite type over the ring Z(p) of
integers localized at p, these mod p equivalences are local equivalences.

Corollary 4.3. If all the spaces ΩT 2`+1{pr} have the same geometriic expo-
nent pr+s then all of double loop spaces Ω2Pn(pr) with n ≥ 3 have this geometric
exponent.

Proof. It follows from the decomposition of the loops on an even dimensional
odd primary Moore space, the bouquet decomposition of the smash of two Moore
spaces, and from the Hilton-Milnor theorem [29, 18] that all these spaces are
infinite products of the spaces T 2`+1{pr} and the spaces ΩS2`+1{pr}. Once looped
these splittings are multiplicative, that is, they are splittings as H-spaces. Since
the latter fibres of degree pr maps, even before they are looped, have geometric
exponent pr [15], this completes the argument. �

It is useful to record [15]

Lemma 4.4. If p is an odd prime, the fibres of degree pr maps S2`−1{pr} are
all H-spaces with a null homotopic power map pr. They are always homotopy com-
mutative and, if p > 3, they are homotopy associative.

Theorem 4.5. Semi-splitting: a. Let Y be an n − 1 connected space, n ≥ 2,
where ΣY has the homotopy type of a bouquet of mod pr Moore spaces. Suppose
that p is an odd prime.

b. Suppose that

f : X → Y

is a mod pr homology monomorphism where

X = S`1 × · · · × S`k × Z

and where ΣZ has the homotopy type of a bouquet of mod pr+s Moore spaces with
s ≥ 0, but the s may vary.

c. Let G be a homotopy associative H-space with prπ∗(G) = 0, that is all the
integral homotopy groups of G are annihilated by pr.

Let g : X → G be any map which is null on the 2-skeleton. Then there exists a
map

h : Y → G

such that h ◦ f = g.

Loosely speaking, h is an “extension” of g.

Remark: This theorem was previously stated only for the special case G =
S2m−1{pr} with p > 3. And the statement includes the case where X has no sphere
factors or where Z is a point. Observe that the hypothesis implies that ΣX has
the homotopy type of a bouquet of spheres and mod pr+s Moore spaces, s ≥ 0.



12 JOSEPH NEISENDORFER

5. Proof of the geometric exponent theorems for odd primary Moore
spaces

First, we prove the upper bound exponent theorem proved in [5].
Consider the fibration sequence

Πr+1 × C(n)→ T 2n+1{pr} → ΩS2n+1{pr}.
Once looped this sequence is a multiplicative fibration sequence. Hence the total
space has geometric exponent bounded by the product of the geometric exponents of
the ends. Since S2n+1{pr} has geometric exponent pr, C(n) has geometric exponent

p, and Πr+1 = Πk≥1S
2pkn−1{pr+1} has geometric exponent pr+1 [4, 3, 15] we get

Theorem 5.1. All the spaces ΩT 2n+1{pr} have geometric exponent bounded
above by p2r+1 and hence so do all the double loops on mod pr Moore spaces
Ω2Pm(pr) with p an odd prime and m ≥ 3.

Corollary 5.2. If p is an odd prime and m ≥ 3, then p2r+1 annihilates the
homotopy groups π∗(P

m(pr)).

In order to prove the sharp geometric exponent theorem for odd primary Moore
spaces, we recall some facts about mod pr homology of the spaces involved. As
usual, all the results will be at an odd prime p.

Theorem 5.3. All the mod pr homologies H = H( , Z/prZ) are free over the
ring Z/prZ:

a) H(S2n+1{pr+1}) = E(x2n+1)⊗ P (y2n) with βr+1x = y.
b) the four fibrations

ΩF 2n+1{pr} → ΩP 2n+1(pr)→ ΩS2n+1

Ω
∨
α

Pα+1(pr)→ ΩF 2n+1{pr} →W 2n+1{pr}

Ω
∨
α

Pα+1(pr)→ ΩP 2n+1{pr} → T 2n+1{pr}

W 2n+1{pr} → T 2n+1{pr} → ΩS2n+1

are totally non homologous to zero mod pr with the first three being principal fibra-
tions.

Proof. Part a) is a consequence of the fact that the fibration ΩS2n+1 →
S2n+1{pr+1} → S2n+1 is totally nonhomologous to zero mod pr.

The fact that the first fibration in part b) is totally nonhomologous to zero is
part of the main computation in [4]. The second and third fibrations in part b) are
both split, hence they are both totally nonhomologous to zero.

Since the Serre spectral sequence of the first fibration in part b) maps surjec-
tively to the Serre spectal sequence of the fourth fibration, the fact that the first is
totally nonhomologous to zero implies that the fourth one is also.

�

Scholium: Since all of the above spaces have mod pr homologies which are free
over Z/prZ, it follows that the corresponding mod p homologies are gotten from
these by simply tensoring with Z/pZ.
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Furthermore, the fact that T 2n+1{pr} is a retract of ΩP 2n+1(pr) implies that
ΣT 2n+1{pr} is a bouquet of mod pr Moore spaces. Since V 2n−1{pr} ' Πr+1×S2n−1

with ΣΠr+1 having the homotopy type of a bouquet of mod pr+1 Moore spaces,
the semi-splitting theorem applies when G = Πr is homotopy associative, that is,
when p > 3.

Hence, any map

g : V 2n+1{pr} → G = Πr = ΠkS
2pkn−1{pr}

extends to a map h : T 2n+1{pr} → G.
We choose g : Πr+1 × S2n−1 → G = Πr to be defined by projection onto Πr+1,

then followed by the projection in the fibration sequence [16]

Π1 → Πr+1 → Πr.

Thus, when p > 3, a special case of 4.5 is the following:

Corollary 5.4. Let f : Πr+1×S2n−1 → T 2n+1{pr} be the map which occurs in

the cut down version of the main diagram and let g : Πr+1×S2n−1 proj−−−→ Πr+1
ρ−→ Πr

be a map where the fibre of ρ is Π1. Then, if p > 3, there is a map h : T 2n+1{pr} →
Πr such that the composition h · f = g.

Remark: Since the fibre of the double suspension C(n) factors through the
sphere, it is automatic that the sphere S2n−1 may be replaced by C(n) in the
above corollary. The map Ωh : ΩT 2n+1{pr} → ΩΠr is the “extension” of Ωg. If Ωh
is restricted to ΩW 2n+1{pr}, it is just the loop of the map

Πr+1 × S2n−1 proj−−−→ Πr+1
Ππk−−−→ Πr

If we restrict further to the space ΩV 2n+1{pr}, it is the loop of the map

Πr+1 × C(n)
proj−−−→ Πr+1

Ππk−−−→ Πr.

Hence we have two fibration sequences as follows;

Theorem 5.5. If p > 3, there is a fibration sequence

ΩΠr+1 × ΩC(n)→ ΩT 2n+1 → Ω2S2n+1{pr}
and there is a map

Ωh : ΩT 2n+1{pr} → ΩΠr,

“the loop of the semi-splitting,” which restricts to ΩV 2n+1{pr} = ΩΠr+1 × ΩC(n)
to define a fibration sequence

ΩΠ1 × ΩC(n)→ ΩΠr+1 × ΩC(n)→ ΩΠr

.

Corollary 5.6. For m ≥ 3 and p > 3, the double loop space Ω2Pm(pr) has
geometric exponent pr+1 and hence pr+1 annihilates the homotopy groups π(Pm(pr)).

Proof. The fibrations in the preceding theorem are multiplicative. Let α be
the identity map on ΩT 2n+1{pr}. Then prα goes to zero in Ω2S2n−1{pr}. Hence,
prα comes from a map δ into ΩC(n)×ΩΠr+1. Now δ goes to prε in ΩΠr where ε is
the image of α. Since this is zero, δ comes from ΩC(n)×ΩΠ1. Hence δ has order p
and α has order pr+1. Since the geometric exponent of ΩT 2n+1{pr} is pr+1 for all
n, the geometric exponent of Ω2Pn(pr) is also pr+1. �
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6. An exponent for the odd primary Moore spaces which works for all
odd primes

Since the spaces S2n+1{pr} are known to be homotopy associative only for
primes p > 3, the homotopy exponent of pr+1 for a mod pr Moore space is not
known to be valid for mod 3r Moore spaces. In this section, we replace these spaces
by the double loop spaces Ω2S2n+1{pr} which are certainly homotopy associative
and achieve the homotopy exponent pr+2 for all mod pr Moore spaces of dimension
≥ 3 and all odd primes.

Consider the commutative diagram below which defines the double suspension
Σ2 : S2n−1{pr} → Ω2S2n+1{pr} for fibres of degree pr maps. In this diagram all
rows and all columns are fibration sequences.

C(n)× ΩC(n) → S2n−1{pr} Σ2

−−→ Ω2S2n+1{pr}
↓ ↓ ↓

C(n) → S2n−1 Σ2

−−→ Ω2S2n+1

↓ pr ↓ pr ↓ pr

C(n) → S2n−1 Σ2

−−→ Ω2S2n+1

The left vertical column is a fibration sequence since pr is null on C(n) and
the top horizontal row is the version of the double suspension for fibres of degree
pr maps.

The product gives a map

Σ2 : Πr =
∏
k≥1

S2pk−1{pr} →
∏
k≥1

Ω2S2pk+1{pr} = Ω2
r.

We now replace corollary 5.4 by the following form of the semi-splitting:

Corollary 6.1. Let f : Πr+1 × S2n−1 → T 2n+1{pr} be the map which occurs
in the cut down version of the main diagram and compose the previous map with
the double suspension, that is, let g be the composition

g : Πr+1 × S2n−1 proj−−−→ Πr+1
ρ−→ Πr

Σ2

−−→ Ω2
r.

Then, if p is any odd prime, there is a map h : T 2n+1{pr} → Ω2
r such that the

composition h · f = g.

Just as in section 5, it is automatic that the sphere S2n−1 may be replaced by
C(n) in the above corollary. The map Ωh : ΩT 2n+1{pr} → ΩΩ2

r is the “extension”
of Ωg. If Ωh is restricted to ΩW 2n+1{pr}, it is just the loop of the map

Πr+1 × S2n−1 proj−−−→ Πr+1
Ππk−−−→ Πr

Σ2

−−→ Ω2
r

If we restrict further to the space ΩV 2n+1{pr}, it is the loop of the map

Πr+1 × C(n)
proj−−−→ Πr+1

Ππk−−−→ Πr
Σ2

−−→ Ω2
r.

Hence we have two fibration sequences as follows:

Theorem 6.2. If p is an odd prime, there is a fibration sequence

ΩΠr+1 × ΩC(n)→ ΩT 2n+1 → Ω2S2n+1{pr}
and there is a map

Ωh : ΩT 2n+1{pr} → ΩΠr
Σ2

−−→ ΩΩ2
r,
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“the loop of the semi-splitting,” which restricts to ΩV 2n+1{pr} = ΩΠr+1 × ΩC(n)
to define the maps

ΩΠr+1 × ΩC(n)→ ΩΠr+1 → ΩΠr
ΩΣ2

−−−→ ΩΩ2
r

where
ΩΠ1 × ΩC(n)→ ΩΠr+1 × ΩC(n)→ ΩΠr

is a fibration sequence.

Corollary 6.3. For m ≥ 3 and p an odd prime, the double loop space
Ω2Pm(pr) has geometric exponent pr+2 and hence pr+2 annihilates the homotopy
groups π(Pm(pr)).

Proof. The fibrations in the preceding theorem are multiplicative. Let α be
the identity map on ΩT 2n+1{pr}. Then prα goes to zero in Ω2S2n−1{pr}. Hence,
prα comes from a map δ into ΩC(n) × ΩΠr+1. Now δ goes to prε in ΩΩ2

r where
ε is the image of α. This is zero since ΩΩ2

r has geometric exponent pr. Hence, δ
goes through the fibre of ΩΠr → ΩΩ2

r. Since the fibre of this map has geometric
exponent p, pδ goes to zero in ΩΠr.

Since this is zero, pδ comes from ΩC(n)× ΩΠ1. Hence pδ has order p, that is,
δ has order p2 and α has order pr+2. Since ΩT 2n+1{pr} has geometric exponent
≤ pr+2 for all n, Ω2Pm(pr) has geometric exponent ≤ pr+2 for all m ≥ 3. �

7. The adjoint form of the semi-splitting

Let G be an H-space. Then there is an extension of the suspension map Σ :
G → ΩΣG to a retraction π : ΩΣG → G. If G is homotopy associative, π can be
chosen to be an H-map. [24]

In any case, let F (G) → ΩΣG → G be a fibration sequence up to homotopy.
F (G) is called a ”universal Samelson product.”

Remark: When G is homotopy associative and homotopy commutative, the
name universal Samelson product is justified, for example, when G = S2n+1{pr},
G = Πr with p > 3 [15], or G = Ω2Πr = Ω2

r. In these cases, all Samelson products
in ΩΣG vanish upon projection to G and hence factor through the fibre F (G).

Since the fibration sequence is split, there is a homotopy equivalence

ΩΣG ' G× F (G).

If g : ΣZ → ΣG is a map with adjoint g : Z → ΩΣG, we may uniquely decompose
this as a sum g = g1 +w where g1 factors through G and w factors through F (G).

Remark: If ΣZ ' ΣZ is a homotopy equivalence which is not a suspension, it
is possible that the above decomposition g = g1 +w depends on the choice of Z or
Z. For example, if ΣZ ' Σ

∨
α P

nα(pr), it might be convenient to use the bouquet
in order to prove something about Z. But care must be taken.

Given another such map h : ΣZ → ΣG with decomposition of the adjoint
h = h1 + w′, we say that g is congruent modulo Whitehead products to h if the
summands g1 and h1 are equal. We may write g ≡w h for this congruence. With
this notion of modulo Whitehead products, suspension is erased, that is,

[ΣZ,ΣG]∗ = [Z,ΩΣG]∗ = [Z,G]∗ × [Z,F (G)]∗ ≡w [Z,G]∗

Remark: In general, we need to make a distinction between the above notion
of “modulo Whitehead products” and the subsequent notion of “up to addition
of a sum of Whitehead products” in sections 9 and 10. In the case when G is a
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homotopy commutative and homotopy associative H-space, the second notion is a
special case of the first one and no distinction need be made.

Scholium: Recall the split fibration sequence which we choose to write as

Ω
∨
k≥0

P 4m+2k(m−1)−1 → ΩP 2m(pr)→ S2m−1{pr}.

The inclusion of the fibre is the loops on a bouquet of Whitehead products and if
p > 3 it is universal in the sense that any Samelson product into the total space
factors through this fibre. In the special case where G = S2m−1{pr} with p > 3,
we can use this fibration to replace the Hopf fibration just described.

The semi-splitting theorem as described above is implied by the adjoint form:

Theorem 7.1. Semi-splitting: Let Y be an n−1 connected space, n ≥ 2, where
ΣY has the homotopy type of a bouquet of mod pr Moore spaces. Suppose that

f : X → Y

is a mod pr homology monomorphism where ΣX has the homotopy type of a bouquet
of spheres and mod pr+s Moore spaces, s ≥ 0, but the s may vary. Suppose also
that G is a homotopy associative H-space for which all the homotopy groups π∗G
are annihilated by pr.

Let

g : ΣX → ΣG

be any map which is null on the 3-skeleton. Then, if f = Σf : ΣX → ΣY, there
exists a map

h : ΣY → ΣG

such that h ◦ f = g modulo Whitehead products, that is, h ◦ f ≡w g.

In other words, if g : X → ΩΣG and h : Y → ΩΣG are adjoints, then the
following is commutative

Y
h−→ ΩΣG

π−→ G
↑ f ↗ π

X
g
−→ ΩΣG

8. A cofibration sequence

Lemma 8.1. There is a cofibration sequence

Pn(pr+s)
pr−→ Pn(pr+s)

ε−→ Pn(pr) ∨ Pn+1(pr)

where the induced map ε∗ in mod pr homology is:
a) on a generator e in dimension n,

ε∗(e) = (0, βr+se), s > 0, ε∗(e) = (e, 0), s = 0,

and b) on a generator βr+se in dimension n-1,

ε∗(β
r+se) = (βre, 0)), s ≥ 0

Furthermore, the map ε is uniquely determined up to Whitehead products by its
induced map in mod pr homology. If n > 2, then it is uniquely determined.
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Proof. The cofibre is identified by the diagram below in which all rows and
columns are cofibration sequences

Sm−1 pr−→ Sm−1 → Pm(pr)
↓ pr+s ↓ pr+s ↓ pr+s = ∗
Sm−1 pr−→ Sm−1 → Pm(pr)
↓ ↓ ↓

Pm(pr+s)
pr−→ Pm(pr+s)

ε−→ Pm(pr) ∨ Pm+1(pr).

In mod pr homology, the induced map HPm(pr+s)
pr−→ HPm(pr+s) is zero. Hence,

0→ HPm(pr+s)
ε∗−→ HPm(pr)⊕HPm+1(pr)→ HPm+1(pr+s)→ 0

is split exact. If s > 0, the fact that ε∗ commutes with the r−th Bockstein forces
the homology computation (at least up to changing the generators by multiplication
by a unit). If s = 0, then the cofibration sequence is split and we may choose the
bouquet decomposition to get the homology computation in this form.

The fact that ε is determined by its induced map in mod pr homology is a
consequence of Proposition 6.4.3 in [18]. �

9. Acyclic envelopes

Lemma 9.1. Let G be an H-space such that prπ∗G = 0. Given any map g :
P d(pr+s)→ ΣG, there is a factorization modulo Whitehead products

P d(pr+s)
ε−→ P d(pr) ∨ P d+1(pr)

h−→ ΣG h ◦ ε ≡w g.

Proof. Consider the adjoint g : P d−1(pr+s) → ΩΣG and the split fibration
sequence

F (G)→ ΩΣG→ G

The base is an H-space with integral homotopy groups annihilated by pr. Since the
universal coefficient homotopy sequences are split at odd primes [18]

π∗(G;Z/pr+sZ) = π∗(G)⊗ Z/pr+sZ ⊕ Tor(π∗−1(G), Z/pr+sZ),

all maps P d−1(pr+s)→ G are annihilated by pr.
Thus, g = g1 + w where g1 factors through G and w factors though F (G). In

terms of adjoints, g = g1+w. Since g1◦pr = 0, g1 factors through P d−1(pr)∨P d(pr).
Hence, its adjoint g1 factors factors through P d(pr) ∨ P d+1(pr). That is, g − w =
g1 = h ◦ ε factors as desired. �

If s > 0 and the differential is the r − th Bockstein βr, then the above cofibre
map ε is the geometric model for the following definition.

Definition 9.2. Let A = A1 ⊕ A2 be a differential graded submodule of a
differential graded module B and suppose that A1 consists entirely of cycles and
A2 is acyclic. An acyclic envelope of A is a minimal acyclic submodule E(A) of
B which contains A. It is clear that acyclic envelopes always exist if the ambient
module B is acyclic. However, acyclic envelopes are not unique. But they always are

of the form A1⊕sA1⊕A2 with the differential d : sA1

∼=−→ A1 being an isomorphism.
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Remark: For any module A we have dE(A) ⊂ A. Furthermore, E(A1 ⊕A2) =
E(A1)⊕ E(A2) is a choice for an acyclic envelope for the direct sum.

The following lemma and corollary are easy to see

Lemma 9.3. If A1 is a differential submodule and A2 has zero differential in
an ambient acyclic module, then A1 ∩A2 = 0 implies that A1 ∩E(A2) = 0 for any
choice of an acyclic envelope.

Corollary 9.4. If A1⊕A2⊕· · ·⊕Ak is a direct sum of differential submodules,
then so is an acyclic envelope

E(A1 ⊕A2 ⊕ · · · ⊕Ak) = E(A1)⊕ E(A2)⊕ · · · ⊕ E(Ak).

Scholium: We are primarily interested in differential graded modules over the
ring R = Z/prZ . Over the ring R = Z/prZ, projective modules are both free and
injective. Hence, if A ⊂ B is a free submodule of a free module, then B = A ⊕ C
for some free module C.

Corollary 9.5. Let A be a differential graded module over the ring Z/prZ
and suppose A is free in all degrees. Suppose the differential is split, that is,

0→ ZA→ A→ BA→ 0

is split exact. Then ZA,BA,HA are all free modules and

A = ZA⊕ C = HA⊕BA⊕ C
with BA⊕ C acyclic, that is, d : C → BA is an isomorphism.

The above corollary shows that, in the situation which occurs in the semi-
splitting, the explicit description that we have given for acyclic envelopes is valid.

10. Geometric acyclic envelopes

Now suppose we are in the geometric situation of the semi-splitting, that is, we
have a mod pr homology monomorphism f : ΣX → ΣY where ΣY is a bouquet of n
connected mod pr Moore spaces, n ≥ 2 and ΣX is bouquet of spheres and mod pr+s

Moore spaces with possibly varying s ≥ 0. We are given a map g : ΣX → ΣG where
G is an H-space for which all of the integral homotopy groups are annihillated by pr.
We seek to extend this map modulo Whitehead products to a map h : ΣY → ΣG,
that is, we seek h ◦ f ≡w g.

We choose a basis for the mod pr homology of ΣX made up of pairs of gener-
ators xα, β

r+sxα for the mod pr homologies of all the mod pr+s Moore spaces in
the bouquet decomposition of ΣX. If a sphere ΣS` is also a part of this bouquet
decomposition, we include in this basis a generator e` of dimension `+ 1.

Via the embedding of mod pr homologies, we now extend this basis to a basis
for the mod pr homology of ΣY so that it includes a basis for the acyclic envelopes.

That is, if s > 0, each pair of generators has in this basis two associated
generators yα, zα with βryα = xα, β

rzα = βr+sxα. If s = 0, we just have the two
generators xα and βrxα. If e` occurs, we also have a generator z with βrz = e`.
Thus, a basis for the mod pr homology of ΣY includes the acyclic pairs

a) yα, xα, and zα, β
r+sxα, when s ≥ 0.

b) xα, β
rxα when s = 0.
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c) z, e`
In every such pair, the r − th Bockstein of first element is the second element.
Furthermore, the span of all these generators is an acyclic submodule of the

mod pr homology of ΣY. Since this homology is also βr acyclic, we can choose an
acyclic complement to this span and add acycllc pairs zγ , β

rzγ so that the totality
of the pairs is a basis for the reduced mod pr homology of ΣY.

Since ΣY is a bouquet of mod pr Moore spaces, the mod pr Hurewicz map is
surjective. Hence we can choose these mod pr Moore spaces so that the generators
for each of the mod pr Moore spaces are a part of this basis.

In other words, we have chosen the bouquet decomposition of ΣY so that the
resulting basis for mod pr homology is consistent with the acyclic envelopes in the
bouquet decomposition of ΣX.

Scholium: It follows from the Hilton-Milnor theorem [29, 18] that any map
into a bouquet ΣA→ ΣB∨ΣC is a sum of three terms, the projections onto the two
summands plus a sum of Whitehead products. Thus, modulo Whitehead products
it is sum of the two projections. Of course, if the dimension of A is small enough
and the connectivities of B and C are great enough, then the Whitehead products
can be ignored. And in the conclusion of the semi-splitting theorem we are going
to prove, we require an extension only modulo Whitehead products anyway.

We begin with a first approximation to the notion of geometric acyclic envelope.
We shall call ΣX → E(ΣX) = E a total geometric acyclic envelope if E is a

subbouquet of ΣY and the induced map in mod pr homology is an acyclic envelope.
Unfortunately, ε is not usually the same as the “embedding” f . It merely agrees
with it in mod pr homology. But homology cannot see everything. Two paragraphs
below we give a more precise definition of the geometric acyclic envelope when we
restrict to the spheres and mod pr+s Moore space in the bouquet decomposition of
ΣX.

Here is the precise definition of a geometric acyclic envelope in terms of the
bouquet decomposition of ΣX into a bouquet of spheres and mod pr+s Moore
spaces P d(pr+s). There are 3 cases:

1) If the sphere Sd occurs in the bouquet decomposition of ΣX, the geometric
acyclic envelope is E(Sd) = P d+1(pr) where the mod pr homology of E(Sd) has the
acyclic basis z, ed as above and the canonical map ε : Sd → E(Sd) is the inclusion
of the bottom cell..

2) If the mod pr Moore space P d(pr) occurs in the bouquet decomposition
of ΣX, the geometric acyclic envelope is E(P d(pr)) = P d(pr) where the mod pr

homology of E(P d(pr)) has the acyclic basis xα, β
rxα as above and the canonical

map ε : P d(pr)→ E(P d(pr)) is the identity.
3) If the mod pr Moore space P d(pr+s) with s > 0 occurs in the bouquet decom-

position of ΣX, the geometric acyclic envelope is E(P d(pr+s)) = P d(pr)∨P d+1(pr)
where the mod pr homology of E(P d(pr)) has the acyclic basis yα, xα, β

rxα and
zα, β

r+sxα as above and the canonical map ε : P d(pr+s)→ E(P d(pr+s)) is the map
in Lemma 7.1..

For a fixed dimension d, let Ed be the union over all P d of all these acyclic
envelopes embedded in ΣY. Let W be a complementary bouquet to the Ed, that is,
ΣY = Ed ∨W where both Ed and W are bouquets of mod pr Moore spaces. Since
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the mod pr homology of ΣY is βr acyclic, so also is that of W and hence W can
be chosen to be a bouquet of mod pr Moore spaces.

Let P d is any d-dimensional sphere or Moore space which occurs in the bouquet
decomposition of ΣX and let ε : P d → E(P d) be the canonical map.

Theorem 10.1. the map f : ΣX → ΣY restricts to

P d
ε+δ+w−−−−→ Ed ∨W

where
a) ε : P d → E(P d) ⊂ Ed is the canonical map (up to addition of Whitehead

products if d = 3.)
b) δ : P d → W factors throuqh the d − 1 skeleton of W (up to addition of

Whitehead products if d = 3.)
c) w : P d → Ed ∨W is a sum of Whitehead products involving the 3 skeleton.

Proof. The Hilton-Milnor theorem says immediately that the restriction of f
to P d is a sum ε+ δ+w where ε is the projection onto Ed, δ is the projection onto
W , and w is a sum of Whitehead products.

Since the smallest cells in W are dim 2 and 3, since Ed is union of moore spaces
of dimension d, it follows that smallest Whitehead products in w are dimensions 2
+ d-1 - 1 = d, and 3 + d-1 - 1 = d+1. All others are of higher dimension and must
be zero.

Similarly, the projections of f onto Ed and onto W must decompose, up to the
addition of Whitehead products involving the 3 skeleton, into the projections onto
each bouquet factor. Recall that f is consistent with mod pr homology. That is,
in mod pr homology, f agrees with ε onto Ed and is zero onto W .

Lemma 10.2. [18] If d ≥ 4, then

[P d(pr+s), P d(pr)] = Z/prZ = hom(Hd−1(P d(pr+s), Hd−1(P d(pr))).

[P d(pr+s), P d+1(pr)] = Z/prZ = hom(Hd(P
d(pr)), Hd(P

d+1(pr)))

[Sd, P d+1(pr)] = Z/prZ = hom(Hd(S
d), Hd(P

d+1(pr))

[Sd, P d(pr)] = 0

If d = 3, the second and third equations are valid. If d = 3, then any map P 3 →
P 3(pr) which is zero in mod pr homology factors through the Hopf map S3 → S2 ⊂
P 3(pr).

The lemma asserts that any map P d → Ed is uniquely determined by its effect
in mod pr homology, except when d = 3. But, even then, since the Hopf map is
twice a Whitehead product, ε is as the theorem states.

Since E(P d) carries the mod pr homology image of P d, the map δ : P d → W
is zero in mod pr homology. It follows that the projections of δ onto any bouquet
summands Sd, P d(pr) or P d−1(pr) are zero, unless d = 3 in which case it could be
a Whitehead product. Thus δ is as the theorem states. �

11. Proof of the semi-splitting

We conclude by proving Theorem 7.1, the adjoint form of the semi-splitting.
Let P d be one of the d−dimensional spaces in the bouquet decomposition of

ΣX. Hence, we know
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Lemma 11.1. a) if P d = P d(pr+s) with s > 0, ε : P d → E(P d) = P d(pr) ∨
P d+1(pr) is the geometric acyclic envelope,

b) if P d = P d(pr), ε : P d → E(P d) = P d(pr) is the geometric acyclic envelope,
c) if P d = Sd, ε : P d → E(P d) = P d+1(pr) is the geometric acyclic envelope.

The mod pr homology monomorphism f : ΣX → ΣY restricts, up to addition of
Whitehead products which involve the 3 skeleton of ΣY , to a map γ : P d → Ed∨W
where γ = ε ∨ δ and the map ε : P d → E(P d) is the map in the preceding lemma..
The map δ : P d → W induces zero in mod pr homology, and up to addition
of Whitehead products which involve the 3 skeleton, δ compresses into the d − 1
skeleton of W.

The algebraic corollary above insures that the geometric acyclic envelopes are
“disjoint” for all components of the bouquet decomposition, that is, over all di-
mensions d and over all the spheres and Moore spaces P d, the geometric envelopes
E(P d) fit together in a large bouquet of mod pr Moore spaces inside the range ΣY .

We shall define h : ΣY → ΣG so that h ◦ f ≡w g modulo Whitehead products.
We suppose that we have defined h on the union of all the mod pr Moore spaces

P `(pr) in W with ` ≤ d. Let P d be a sphere or Moore space of dimension d which
occurs in the bouquet decomposition of ΣZ.

According to Theorem 9.1, f restricts to ε+ δ+w : P d → Ed∨W = ΣY where
w is a sum of Whitehead products which involve the 3 skeleton.

If d = 3, the map g restricts to zero on P d and we can define h to be zero on
E(P d).

Suppose now that d ≥ 4.
In all three cases of P d, we can factor modulo Whitehead products g ≡w a ◦ ε

and h ◦ δ ≡w b ◦ ε. On E(P d), define h = a− b.
Then on P d we have the equation f = ε+δ+w where w is a sum of Whitehead

products involving the 3 skeleton and hence is sent to zero by h.
Hence, modulo Whitehead products

h ◦ f = h ◦ (ε+ δ) = h ◦ ε+ h ◦ δ ≡w a ◦ ε− b ◦ ε+ h ◦ δ = a ◦ ε = g.

Thus, we have extended h to the geometric acyclic envelope E(P d). We can do
this for all the d−dimensional pieces P d of the bouquet decomposition of ΣX. And
we can then do the same for all dimensions d.. That is, we have shown that, when
restricted to any bouquet summand P d ⊂ ΣX, the following diagram commutes
modulo Whitehead products

ΣY
h−→ ΣG

↑ f ↗ g
ΣX

Write ΣX =
∨
P d = Σ

∨
P d−1 as spaces but not as suspensions. In other

words, if

Θ :
∨
P d−1 → ΩΣX

and

Ψ :
∨
P d−1 → ΩΣG

are the respective adjoints, the following commutes
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ΩΣY
Ωh−−→ ΩΣG

π−→ G
↑ Θ ↑=∨
P d−1 Ψ−→ ΩΣG

π−→ G

Since G is homotopy associative, we can extend Θ and Ψ to multiplicative maps

ΩΣ
∨
P d−1 = ΩΣX → ΩΣY

and
ΩΣ

∨
P d−1 = ΩΣX → ΩΣG.

Since these extensions are unique, the first map is ΩΣf = Ωf and the second map
is Ωg. Note that

ΩΣY
Ωh−−→ ΩΣG

π−→ G
↑ ↑=

ΩΣX
Ωg−−→ ΩΣG

π−→ G

commutes since the maps are multiplicative and
∨
P d−1 is a “generating module”

for ΩΣX.
Hence, the following is commutative

Y
Σ−→ ΩΣY

Ωh−−→ ΩΣG
π−→ G

↑ f ↑ ΩΣf ↑=
X

Σ−→ ΩΣX
Ωg−−→ ΩΣG

π−→ G

Since the bottom composition is π ◦ g : X → ΩΣG → G, the top composition
π ◦ h : Y → ΩΣG→ G is the required extension for the semi-splitting.

�
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