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Abstract. In the beginning we are taught that multiplication of pointed loops
is just the first followed by the second. Later we learn that the cobar construc-

tion on the chains of the base is a model for the chains on the loop space, that

is, this cobar construction is chain equivalent to the chains on the loop space.
The cobar construction is a certain tensor algebra and has a natural multi-

plication of tensors. This multiplication of tensors models the multiplication
induced by the multiplication of loops. But, because of the simplicity of the

definition of loop multiplication, this modeling is not obvious. We interpret

loop multiplication so that this modeling becomes a clear consequence of the
naturality of Eilenberg-Moore methods applied to multiple or iterated pull-

backs. In contrast, we observe that, if we require that it be invariant under

homological equivalence of differential coalgebras, there is no natural modeling
of the comultiplication in the loop space. But, in rational homotopy theory,

results of Milnor-Moore and Quillen show that there is a natural modeling of

the Hopf algebra structure of the loop space.
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1. Introduction

The multiplication of pointed loops is perhaps the first definition in algebraic
topology. Simply run the loops in succession to get a group structure on the fun-
damental group, that is,

π(X)× π(X)→ π(X), (α, β) 7→ α ∗ β

where
(α ∗ β)(t) = α(2t), 0 ≤ t ≤ 1

2
β(2t− 1), 1

2 ≤ t ≤ 1

is the multiplication of loops.
Let X be a simply connected space and let C(X) be the 1-reduced chains on

X, that is, there are no non-zero 1-chains. We remark that we always use the
normalized chains, that is, the degenerate chains are set equal to 0. We learn from
Frank Adams and Peter Hilton [2, 1, 14] that the cobar construction ΩC(X) on
the chains C(X) is a model for the chains C(ΩX) on the loop space ΩX. By this,
we simply mean that there is a chain equivalence C(ΩX)→ ΩC(X).

There is some debate on exactly what an Adams-Hilton model is for a loop
space ΩX where X is a simply connected space. All authors agree that it is a chain
complex constructed as a tensor algebra on some kind of chains on X and that its
homology must be that of ΩX.

In the beginning, Adams and Hilton [2] started with a CW complex X and
constructed the Adams-Hilton model as the tensor algebra on the CW chains.
Adams [1] followed with his explicit cobar construction ΩC(X) where C(X) are
the 1-reduced cubical chains on X. Nowadays, the use of cubical chains is rare and
the input into the cobar construction is usually the chains on a simplicial set. For
example, Hess, Parent, Scott, and Tonks [14] refer to the cobar construction ΩC(X)
as the canonical Adams-Hilton model where C(X) are the normalized 1-reduced
chains on the singular complex of X.

In this paper, we shall refer to this canonical Adams-Hilton model, that is, the
cobar construction ΩC(X), as simply the Adams-Hilton model. One exception to
this is in the rational case where the Adams-Hilton model may be taken to be the
cobar construction on Quillen’s commutative chain complex [25].

The loop multiplication makes the loop space ΩX into an H-space and, if we
use the associative Moore loops, the chains C(ΩX) become a differential algebra.
In the next section we shall see that the cobar construction ΩC(X) is also a dif-
ferential algebra. In this note, we shall demonstrate the Adams-Hilton result that
the resulting map

H∗C(ΩX))→ H∗ΩC(X)

is an isomorphism of algebras. We say that the muliplication in the cobar construc-
tion or Adams-Hilton model models the multiplication in the chains on the loop
space. We shall see that this multiplicative result is a consequence of a definition
of loop multiplication via multiple pullback diagrams and of the naturality of an
extension of the homological point of view and classical techniques of Eilenberg and
Moore [9, 23]. We differ from Adams and Hilton in two ways. From the start, we



WHAT IS LOOP MULTIPLICATION ANYHOW? 3

use singular chains instead of CW chains whereas it is only in the solo sequel that
Adams used singular chains. His main motivation was to be able to iterate the
construction.

But our most significant departure is that Adams and Hilton need to construct
specific maps and then to use the Moore comparison theorem (expose 3 in [6]) to
show that it is an equivalence. We require no specific maps here since for us it is
a consequence of a generalization of the Eilenberg-Moore methods to multiple or
iterated pullbacks. Since we are using Eilenberg-Moore methods, our maps go in
the opposite direction than the Adams-Hilton maps go. But these are equivalences
so it does not matter.

Getzler and Goerss [10] have given a model structure to the category of differ-
ential graded coalgebras but we do not consider this here. We need only the work
of Eilenberg-Moore which is prior to the invention of model categories. But that
does not mean that there is no connection with model category structures.

In the category of finite type differential comodules over a fixed finite type
differential coalgebra, our models for path spaces are fibrant objects. And, when
we use Quillen’s commutative chains to do rational homotopy theory [25], the fact
that the cotensor product is the pullback in this category leads to a coalescing of
the Quillen and Eilenberg-Moore points of view.

Even though Baues [3] has shown that, for a simplicial set with a trivial 1-
skeleton, this cobar construction has a natural structure of a differential Hopf al-
gebra, we do not concern ourselves here with this coalgebra structure. We only
mean that there is an equivalence of chain complexes which we shall show induces
a multiplicative isomorphism of homologies.

In fact, given the algebra isomorphism and that the homologies are flat modules,
the general theory of Eilenberg-Moore shows that the map

H∗C(ΩX))→ H∗ΩC(X)

is an isomorphism of Hopf algebras. The point is that the Eilenberg-Zilber map and
the Künneth theorem together define a coalgebra structure in the Adams-Hilton
model ΩC(X) which agrees with the coalgebra structure in the homology of the
loop space HΩX. But this coalgebra structure cannot be defined simply in terms
of the coalgebra C(X). It requires the simplicial structure of the Eilenberg Zilber
map which does not exist for an arbitrary differential coalgebra. We show this by
considering the case of loops on a suspension.

When C is a differential coalgebra with a commutative and associative comulti-
plication, then the Adams-Hilton model can be given the structure of a primitively
generated differential Hopf algebra. A theorem of Browder [5] then shows that
the resulting Hopf algebra structure on HΩC is primitively generated. But this
coalgebra structure may have little to do with the geometric one on the homology
of the loop space HΩX = HΩC(X) even when there is an equivalence of differen-
tial coalgebras C → C(X). The actual geometric structure may not be primitively
generated.

In the case of rational loop spaces, the work of Milnor-Moore [20, 21] and
Quillen [25] already showed that the Adams-Hilton model can be given the structure
of a primitively generated differential Hopf algebra so that its homology agrees with
the homology of the loop space as a Hopf algebra.

In our penultimate section we show how to use the Eilenberg-Moore machinery
to compute the mod p homology of the double loop space of a sphere, both the
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multiplication and the comultiplication, in fact, the entire differential Hopf algebra
structure with the Bockstein as differential.

Finally we close with a summary of the overall picture of the Hopf algebra
structure in cobar constructions. One goal of this paper is to provide in one place a
description of the multiplicative and comultiplicative structures in the homology of
Adams-Hilton models applied to differential coalgebras. When do they exist, and
when do they agree with geometry? This situation used to confuse me and it still
confuses many otherwise competent people. It turns out that the multiplicative
structure is always there, it always agrees with geometry, and it is unique. But the
comultiplication is much more subtle. It is not always there and, if there, it might
not agree with geometry. It is always there in the case of the Adams-Hilton model
applied to a simplicial coalgebra and this structure always agrees with geometry.
For example, it is always there in the homology of the Adams-Hilton model applied
to the chains on a (simply connected) topological space. But this structure is
hard to get your hands on since simplicial coalgebras are too large and since the
comultiplications in the homology of Adams-Hilton models are not invariant under
the input into the Adams-Hilton models of homologically equivalent differential
coalgebras. The comultiplication in the homology of the Adams-Hilton models is
just not “visible” unless you are given knowledge of something extra such as rational
coefficients, or the generating complex in the Bott-Samelson theorem, or the action
of Steenrod and other operations, or even just a lucky confinement of the generators
to degrees which force primitive generation.

I am grateful to Kathryn Hess for listening to a version of this.

2. The cobar construction on a differential graded coalgebra

Let R be a commutative ring and, over R, let C be a simply connected differen-
tial graded coalgebra with an associative diagonal ∆ : C → C⊗C. Thus, C0 = R =
the ground ring and C1 = 0. We have a splitting C = R ⊕ C where C is the part
concentrated in (strictly) positive degrees. For any positive degree element c ∈ C
we write

∆(c) = c⊗ 1 + 1⊗ c+
∑

c′ ⊗ c” = c⊗ 1 + 1⊗ c+ ∆(c)

where ∆(c) ∈ C ⊗ C.
The cobar construction ΩC is the tensor algebra T (s−1C) with an internal

differential dI and an external differential dE . They are both derivations and are
given on generators by

dI(s
−1c) = −s−1dc

and

dE(s−1c) =
∑

(−1)deg c
′
(s−1c′)(s−1c”).

Lemma 2.1. d2
I = d2

E = 0, dIdE = −dEdI

In the lemma, the first formula is trivial, the second follows from coassocia-
tivity of the diagonal, and the third follows from the fact that the diagonal is a
coderivation. It follows that the total differential dT = dI + dE has square 0, that
is, it is a differential and it is also a derivation. We define the cobar construction
to be the differential graded algebra ΩC with this total differential [1, 16, 23].
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3. Cotensor products, pullbacks, and the Eilenberg-Moore theorem

If M is a right comodule over a coalgebra C and N is a left comodule over C,
then the cotensor product M2CN is the kernel of the map

∆⊗ 1− 1⊗∆ : M ⊗N →M ⊗ C ⊗N

that is, it is the equalizer of the two maps ∆ ⊗ 1 and 1 ⊗∆. It is the dual of the
tensor product and behaves as one might expect.

Lemma 3.1. a) (M2CN)2DP ∼= M2C(N2DP ) when this makes sense and
M,N and P are flat modules over the ground ring.

b) M
∆−→M ⊗C and N

∆−→ C⊗N are isomorphisms onto M2CC and C2CN,
respectively. In other words, M = M2CC and N = C2CN are the isomorphic
images of the coactions ∆.

If the ground ring is a field, the above lemma is just the dual of the usual
facts about tensor products and, since coalgebras and comodules are direct limits
of finite type objects, the lemma follows immediately by dualization. But the above
lemma is best proved directly. It can be noted that part b) follows from the fact
that the standard complex or cobar resolution

0→M
∆−→M ⊗ C ∆⊗1−1⊗∆−−−−−−−→M ⊗ C ⊗ C → . . .

is exact [8, 18, 11].
Given a diagram

X

  @
@@

@@
@@

@ Y

��~~
~~
~~
~~

Z

we complete it to a pullback diagram in the form of a diamond

W

~~}}
}}
}}
}}

  A
AA

AA
AA

A

X

  B
BB

BB
BB

B Y

~~}}
}}
}}
}}

Z

with the pullback denoted by W = X ×Z Y , that is, W is the product of X
and Y over Z.

If X,Y, and Z are spaces, the Alexander-Whitney map ∆ : CW → CW ⊗CW
gives a map ∆ : CW → CX ⊗ CY . It is clear that this map factors through
∆ : CW → CX2CZCY.

Recall that a proper resolution is one in which the connectivity of each stage
increases by one. This is a strong condition which confines the related assembled
total complex to positive degrees.

The main theorem of Eilenberg-Moore [9, 23] says

Theorem 3.2. Let Z be simply connected and suppose at least one of X → Z
or Y → Z is a fibration. Let CX → TX and CY → TY be the total complexes of
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proper injective resolutions of differential comodules over CZ, then ∆ composes to
give a natural chain equivalence

CW
∆−→ CX ⊗ CY → TX2CZTY .

Furthermore, the maps

CX2CZTY → TX2CZTY ← TX2CZCY

are chain equivalences. In fact, any of CX,CY or CZ can be replaced by a dif-
ferential objects which are chain equivalent via maps of differential comodules and
coalgebras.

The Eilenberg-Moore theorem is often stated in the weaker form that there is
an isomorphism of the homology of the pullback with differential Cotor, that is,

HW
∼=−→ CotorCZ(CX,CY )

is a natural isomorphism.
The fact that we need only one resolution is referred to by saying that Cotor is

a “balanced” functor. The fact that the chain complexes can be replaced by chain
equivalent ones is referred to by saying that Cotor is “homologically invariant.”

4. Multiple pullbacks and the extended Eilenberg-Moore theorem

The Eilenberg-Moore theorem is extended to larger pullback diagrams in the
following way. Let W = X1 ×A1

X2 ×A2
X3 ×A3

· · · ×An−1
Xn be the pullback of

the diagram

X1 X2 . . . Xn−1 Xn

↘ ↙ ↘ ↙ . . . ↙ ↘ ↙
A1 A2 . . . An−2 An

These multiple pullback diagrams are often better understood by expanding
them into a collection of iterated “pullback diamonds.” We illustrate this in the
case n = 3.

W

!!C
CC

CC
CC

C

}}{{
{{
{{
{{

W1

}}{{
{{
{{
{{

!!C
CC

CC
CC

C W2

}}{{
{{
{{
{{

!!C
CC

CC
CC

C

X1

!!C
CC

CC
CC

C X2

!!C
CC

CC
CC

C

}}{{
{{
{{
{{

X3

}}{{
{{
{{
{{

A1 A2

Thus,

W1 = X1 ×A1
X2, W2 = X2 ×A2

X3

and

W = X1 ×A1
X2 ×A2

X3 = W1 ×X2
W2.

The following extension [23] of the Eilenberg-Moore theorem to multiple pull-
backs is easily proved by induction. In fact, in this paper, we use only the cases
where n ≤ 3.
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Theorem 4.1. Let A1, A2, . . . An−1 all be simply connected spaces and suppose
that all but possibly one of the maps Xi → Ai and Xi → Ai−1 are fibrations.
Let CXi → Ti the total complexes of proper injective resolutions of differential bi-
comodules over CAi and CAi−1. (At the ends, we do not have bi-comodules but
only comodules.) Then ∆ composes to give a natural chain equivalence

CW → T12C(A1)T22C(A3)T3 . . .2C(An−1)Tn.

In particular, the resulting homology isomorphism, denoted

HW
∼=−→ CotorCA1,CA2,...,CAn−1(CX1, CX2, . . . , CXn)

is a natural isomorphism.

And, similar to the case of a simple pullback, we can replace any one Ti by
C(Xi) or indeed by any comodule which is chain equivalent.

5. Loop spaces as pullbacks

If X is a pointed space, let PRX be the space of paths which begin at the
basepoint ∗. Then we have a fibration PRX → X with fibre the loop space ΩX.
Likewise we have a fibration PLX → X where PLX is the space of paths which end
at the basepoint ∗. Hence we have maps of homotopy equivalent pullback diagrams

ΩX ΩX
↙ ↘ ↙ ↘

PRX ∗ −→ PRX PLX
↘ ↙ ↘ ↙
X X

and a similar diagram where the roles of PRX and PLX are interchanged.
Note that the space ΩX is just a pair of paths (ω, σ) such that

ω(0) = σ(1) = ∗, ω(1) = σ(0).

This amounts to two paths which connect. Hence, it can be considered to be one
path defined on the interval [0, 2]. The space ΩX is clearly homeomorphic to the
usual loop space ΩX.

The map τ : C → ΩC defined by

τc = s−1c, deg c > 0, τ1 = 0

is a ”twisting function.” That is, if ∆ is the diagonal and µ is the multiplication,
dτ + τd = µ(τ ⊗ τ)∆. Both ΩC ⊗ C and C ⊗ ΩC become acyclic with the new
differentials which are the sum of the usual tensor product differential and the
respective additions of

Dτ (α⊗ c) = (−1)deg α(α(τc)⊗ 1 + α(τc′)⊗ c”)

and
Dτ (c⊗ α) = −(1⊗ (τc)α+ (−1)deg c

′
c′ ⊗ (τc”)α)

where ∆c = c⊗ 1 = 1⊗ c+
∑
c′ ⊗ c”.

These acyclic complexes are both the total complexes of resolutions and are
denoted respectively by ΩC ⊗τ C and C ⊗τ ΩC.

With C = CX, these are both ”models” for the chains on the path space, that
is, there are chain equivalences

CPLX ' CX ⊗τ ΩCX, CPRX ' ΩCX ⊗τ CX.
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It follows from Eilenberg-Moore that there are natural chain equivalences

C(ΩX)→ R2CXCX ⊗τ ΩCX = R⊗ ΩCX = ΩCX

and
C(ΩX)→ ΩCX ⊗τ CX2CXR = ΩCX ⊗R = ΩCX

where R is the ground ring.
The cobar construction ΩCX is also called the Adams-Hilton model for the

loop space.

6. A crucial chain equivalence

There is a chain equivalence

C(ΩX)→ ΩCX ⊗τ CX2CXC(X)⊗τ ΩCX = ΩCX ⊗τ CX ⊗τ ΩCX.

The differential in the tensor product

ΩCX ⊗ CX ⊗ ΩCX = ΩCX ⊗τ CX ⊗τ ΩCX

is the unique differential which is compatible with the embedding

1⊗∆⊗ 1 : ΩCX ⊗τ CX ⊗τ ΩCX → ΩCX ⊗τ CX ⊗ CX ⊗τ ΩCX.

Lemma 6.1. The augmentation ε : CX → R combined with the multiplication
µ : ΩCX ⊗ ΩCX → ΩCX gives a chain equivalence

M : ΩCX ⊗τ CX ⊗τ ΩCX
1⊗ε⊗1−−−−→ ΩCX ⊗R⊗ ΩCX = ΩCX ⊗ ΩCX

µ−→ ΩCX.

Proof. First we show that M is a chain map. There is a commutative diagram

ΩCX ⊗τ CX ⊗τ ΩCX
1⊗ε⊗1−−−−−→ ΩCX ⊗R⊗ ΩCX = ΩCX ⊗ CX

↓ 1⊗∆⊗ 1 ↓ 1⊗∆⊗ 1 ↓ µ
ΩCX ⊗τ CX ⊗ CX ⊗τ ΩCX 1⊗ ε⊗ ε⊗ 1 ΩCX ⊗R⊗R⊗ ΩCX

mult−−−→ ΩCX

The map M from the upper left corner down and all the way across is clearly
a chain map on the subcomplex ΩCX ⊗ R ⊗ ΩCX. We claim it is also a chain
map when extended to the whole domain. Let c ∈ CX be a strictly positive degree
element. Then α ⊗ c ⊗ β maps to 0 via M. To show M is a chain map, it suffices
to show that d(α⊗ c⊗ β) maps to 0 via M .

But d(α⊗ c⊗ β) maps down to

d(α⊗ c⊗ 1⊗ β) + d(α⊗ 1⊗ c⊗ β) + d(α⊗ c′ ⊗ c”⊗ β).

The first term is

d(α)⊗ c⊗ 1⊗ β) + (−1)deg αα(τc)⊗ 1⊗ 1⊗ β + (−1)deg αα(τc′)⊗ c”⊗ 1⊗ β
+(−1)deg α+ deg cα⊗ c⊗ 1⊗ 0β + (−1)deg α+ deg cα⊗ c⊗ 1⊗ dβ.

The second term is

d(α)⊗ 1⊗ c⊗ β) + (−1)deg αα0⊗ 1⊗ c⊗ β − (−1)deg αα⊗ 1⊗ 1⊗ (τc)β

−(−1)deg α+deg c′α⊗ 1⊗ c′ ⊗ (τc”)β + (−1)deg α+ deg cα⊗ 1⊗ c⊗ dβ.
The third term is a 4 fold tensor with at least one of the middle two tensor of
strictly positive degree.

If we now move one step to the right by applying the map 1⊗ ε⊗ ε⊗ 1, most
terms are annihilated and we get

(−1)deg αα(τc)⊗ 1⊗ 1⊗ β − (−1)deg αα⊗ 1⊗ 1⊗ (τc)β.
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Finally we apply multiplication which collapses all the tensors, and sends the
above to 0. We get

Md(α⊗ c⊗ β) = 0

which shows that M is a chain map.
Second, we claim that M is a chain equivalence.
Since ΩCX ⊗τ CX is acyclic, Eilenberg-Moore says that

R2CXCX ⊗τ ΩCX → ΩCX ⊗τ CX2CXCX ⊗τ ΩCX

is a chain equivalence with R→ ΩCX ⊗τ CX given by 1 7→ 1⊗ 1. That is,

R⊗ ΩCX → ΩCX ⊗τ CX ⊗τ ΩCX

is a chain equivalence with 1⊗ α 7→ 1⊗ 1⊗ α. Since the composition

ΩCX = R⊗ ΩCX → ΩCX ⊗τ CX ⊗τ ΩCX
M−→ ΩCX

is the identity, it follows that M is a chain equivalence.
�

Alternatively [23], one can check that the differential in ΩCX⊗τ CX⊗τ ΩCX
is given by

d = dτ ⊗ 1 + 1⊗ dτ − 1⊗ dCX ⊗ 1

where dτ denotes the differential on the appropriate twisted tensor product. This
amounts to showing that the following diagram commutes

ΩCX ⊗τ CX ⊗τ ΩCX
1⊗∆⊗1−−−−−→ ΩCX ⊗τ CX ⊗ CX ⊗τ ΩCX

↓ dτ ⊗ 1 + 1⊗ dτ ↓ dτ ⊗ 1⊗ 1

−1⊗ dCX ⊗ 1 +1⊗ 1⊗ dτ
ΩCX ⊗τ CX ⊗τ ΩCX

1⊗∆⊗1−−−−−→ ΩCX ⊗τ CX ⊗ CX ⊗τ ΩCX.

Given the explicit formula for the differential, it is easy to see that M is a chain
map.

Remark: In the above lemma, the signs involved in the differential in ΩCX ⊗τ
CX ⊗τ ΩCX are crucial. Nothing would work without them.

7. Loop multiplication via multiple pullbacks

In terms of multiple pullbacks, loop multiplication

ΩX × ΩX → ΩX, (ω, σ) 7→ (ω, σ) ≡ ω ∗ σ
is given by the map of the top diagram to the diagram below it

ΩX × ΩX

yysss
sss

sss
s

%%KK
KKK

KKK
KK

ΩX

{{ww
ww
ww
ww
w

%%KK
KK

KK
KK

KK
K ΩX

yysss
ss
ss
ss
ss

##F
FF

FF
FF

FF

PRX

##G
GG

GG
GG

GG
∗

yysss
sss

sss
sss

%%KK
KKK

KKK
KKK

K PLX

{{xx
xx
xx
xx
x

//

X X
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Ω̄X

{{xx
xx
xx
xx
x

""F
FF

FF
FF

FF

PRX

{{www
ww
ww
ww

##F
FF

FF
FF

FF
PLX

||xx
xx
xx
xx
x

##G
GG

GG
GG

GG

PRX

##H
HH

HH
HH

HH
X

{{ww
ww
ww
ww
w

##F
FF

FF
FF

FF
PLX

{{vv
vv
vv
vv
v

X X

When we apply the chain functor, the diagrams are chain equivalent to

ΩCX ⊗ ΩCX

xxqqq
qqq

qqq
q

&&MM
MMM

MMM
MM

ΩCX

xxqqq
qqq

qqq
qq

&&MM
MMM

MMM
MMM

M ΩCX

xxqqq
qqq

qqq
qqq

&&MM
MMM

MMM
MMM

ΩCX ⊗τ CX

&&MM
MMM

MMM
MM

R

xxqqq
qqq

qqq
qq

&&MM
MMM

MMM
MMM

CX ⊗τ ΩCX

xxqqq
qqq

qqq
q

//

CX CX

ΩCX ⊗τ CX ⊗τ ΩCX

uukkkk
kkkk

kkkk
kk

))SSS
SSSS

SSSS
SSS

ΩCX ⊗τ CX

vvnnn
nnn

nnn
nnn

))SSS
SSS

SSS
SSS

SSS
CX ⊗τ ΩCX

uukkkk
kkk

kkk
kkk

kk

((PP
PPP

PPP
PPP

P

ΩCX ⊗τ CX

((PP
PPP

PPP
PPP

PP
CX

uukkkk
kkk

kkk
kkk

kkk

))SSS
SSS

SSS
SSS

SSS
S CX ⊗τ ΩCX

vvnnn
nnn

nnn
nnn

n

CX CX

In these terms, the loop multiplication induces the chain map

ΩCX ⊗ΩCX = ΩCX ⊗R⊗ΩCX → ΩCX ⊗τ CX ⊗τ ΩCX, α⊗β 7→ α⊗ 1⊗β.

This composes with the chain equivalence M to show that loop multiplication is
modeled by the tensor multiplication in the cobar construction

ΩCX ⊗ ΩCX → ΩCX ⊗τ CX ⊗τ ΩCX
M−→ ΩCX, α⊗ β 7→ αβ.

That is, if HΩC is flat over R, then loop multiplication induces in homology the
map

H(ΩCX)⊗H(ΩCX)→ H(ΩCX⊗ΩCX)→ H(ΩCX⊗τCX⊗τΩCX)
M−→ HΩCX.

If H(ΩX) is flat over R, the first map is an isomorphism. The map M is always
an isomorphism.

We close with the following remark. Let C be a simply connected differential
coalgebra over a commutative ring R. There is a homology isomorphism HΩC ∼=
CotorC(R,R). In the Eilenberg-Moore language of differential Cotor extended to
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several variables, the tensor multiplication in the cobar construction ΩC ⊗ ΩC →
ΩC induces in homology the map

CotorC(R,R)⊗ CotorC(R,R)→ CotorC,C(R,R,R)→ CotorC,C(R,C,R) = CotorC(R,R).

The first arrow is an isomorphism if CotorC(R,R) is flat over R. This multiplication
is natural with respect to morphisms of the differential coalgebra C.

We refer the reader to [23] for further details on differential Cotor of several
variables. The main point is that differential Cotor is defined by taking cotensor
products of the assembled complexes associated to resolutions of the comodules.
And, as in the two variable case, one can omit resolving any one of the comodule
variables. In particular, we refer to Section 10.22 of [23] for the proof that, whenever
either or both of HΩC and HΩD are flat over R, then the Kunneth map

HΩC ⊗HΩD → HΩ(C ⊗D)

is an isomorphism of algebras.

8. Model category structures for differential coalgebras and fibrant
objects

Let C be a differential coalgebra over a commutative ring R and consider the
category CC of (left) differential comodules over C.

Suppose that C is simply connected, that is, C0 = R, C1 = 0. If the ground
ring R is a field and both the coalgebra and the comodules are assumed to be
of finite type then Kathryn Hess [12] has shown that there is a model category
structure on CC in which the weak equivalences are homology isomorphisms, the
cofibrations are degreewise injections, and the fibrations are all morphisms which
have the right lifting property with respect to all acyclic cofibrations. That is,
p : E → B is a fibration if and only if the commutative rectangular diagram below
with i : N → M a cofibration and a weak equivalence, can always be extended as
below to a commutative diagram which includes the slanted arrow

N
f−→ E

↓ i ↗ ↓ p
M

g−→ B

We remark that the original Quillen definition of model category is used. [24]
Only finite limits and finite colimits are required.

Later Kathryn Hess and Brooke Shipley showed that this statement is true if C
is required to be simply connected, finite type and free in each degree, the ground
ring R is required to be semi-hereditery, but now comodules are not restricted to be
finite type. [15] Finally, the team of Hess, Kedziorek. Riehl, and Shipley achieved
the desired goal of proving it without any assumptions of simple connectivity, finite
type, freeness, and over any commutative ring [13].

In the original case considered by Kathryn Hess, we show that Cartan’s con-
structions give examples of fibrant objects.

Recall that a construction D in the sense of Cartan is a differential comodule
over C which satisfies: D = C ⊗X as a comodule when we forget the differential,
that is, the coaction is

∆ : D = C ⊗X ∆⊗1−−−→ C ⊗ C ⊗X = C ⊗D
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and the coaction is a chain map.
If C is a differential coalgebra, A is a differential algebra, and τ : C → A is

a twisting function, then the twisted tensor product C ⊗τ A is a an example of a
construction.

If the unique map D → 0 is a fibration, then D is called a fibrant object.
Hence, D is fibrant if and only if, whenever i : N →M is an acyclic cofibration (=
cofibration and weak equvalence), then any map N → D extends to a map M → D.

We conjecture that a Cartan construction D is always a fibrant object.
Unfortunately we can only prove this in the category of differential comodules

over a field where the differential coalgebra is finite type and simply connected.

Theorem 8.1. Let C be a simply connected differential coalgebra over a field.
Let D be a finite type construction over C. Then D is fibrant in the model category
of finite type differential comodules. That is, if i : N →M is an acyclic cofibration
with domain and range both of finite type, then any map N → D extends to a map
M → D.

Proof. With the hypotheses we have, it is sufficient to prove the dual state-
ment for differential modules over a simply connected differential algebra A with
differentials δ of degree +1. The appropriate dual to a Cartan comodule construc-
tion is a differential A module D which is isomorphic to A⊗K when we forget the
differential. The dual of our extension problem is the lifting problem

M

p

��
D

g
>>}

}
}

} f // N

where g : D →M is to be constructed as a lift of f : D → N given that p : M → N
is a fibration (= epimorphism) and a weak equivalence (= homology isomorphism).

We begin by decomposing the differential module D/AD ∼= K into a direct
sum of its homology and an acyclic summand. This shows that each Kn can be
chosen to have a basis {xα, xβ , xγ} where

δxα =
∑
ai ⊗ ki, deg ai ≥ 2, deg ki ≤ n− 1 is decomposable

δxβ = yβ is a basis element ∈ Kn+1

xγ = δzγ where z is a basis element ∈ Kn−1

Then

K[n] = K≤n−1⊕ < xα, xβ , δxβ , xγ > .

Note that D has a complete ascending filtration by subdifferential modules A ⊗
K[n]. We make the inductive assumption that a module chain lift g of f has been
constructed over A⊗K[n− 1] and seek to extend it to A⊗K[n].

First g(xγ) is defined by g(xγ) = g(δzγ) = δg(zγ). Since pg(zγ) = fzγ ,

pg(xγ) = pδg(zγ) = δpg(zγ) = δf(zγ) = f(δzγ) = f(xγ).

We note that p is an epimorphism on both cocycles and coboundaries.
Choose a coboundary wβ ∈Mn+1 so that pwβ = fyβ = f(δxβ) = δfxβ . Define

gyβ = wβ .
There is an element zβ so that δzβ = wβ . Define gxβ = zβ . Then

δpgxβ = pδgxβ = pδzβ = pwβ = fyβ = fδxβ = δfxβ .
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Thus pgxβ − fxβ is a cocycle. Choose a cocycle uβ so that puβ = pgxβ − fxβ .
Set gxβ = gxβ − uβ . Then pgxβ = fxβ and note that

δgxβ = δzβ = wβ = gyβ = g(δxβ).

Of course, g(yβ) = g(δxβ) = δg(xβ).
Finally, note that g(δxα) is already defined and it is a cocycle. Furthermore,

pg(δxα) = f(δxα) = δfxα. Since pg(δxα) is a coboundary, there is an element zα
so that δzα = g(δxα). Define gxα = zα. Then

δpgxα = pδgxα = pδzα = pg(δxα) = fδxα = δfxα.

Thus pgxα − fxα is a cocycle. Choose a cocycle uα so that puα = pgxβ − fxα.
Set gxα = gxα − uα. Then pgxα = fxα and

δgxα = δgα − δuα = δgxα = δzα = g(δxα).

Hence, a lift g of f has been defined on K[n] compatible with the differential
and it can be uniquely extended to a lift g : A⊗K[n]→M by making it a module
map, that is, g(a⊗ x) = a(gx). It is easy to check that this g is a chain map which
lifts f .

�

In a model category a fibrant model for E is a weak equivalence E → D with D
fibrant. The axioms for a model category give fibrant models since they guarantee

the existence of a factorization E
i−→ D

p−→ 0 with i an acyclic cofibration and p
a fibration. In particular, when C is a simply connected finite type differential
coalgebra over a field, the algebraic model for the path space R → C ⊗τ ΩC is a
fibrant model in the category of finite type differential comodules.

9. Coalgebra structures in the homology of loop spaces

In this section, it is essential that we use the normalized chains on a topological
space, that is, the chains in which degenerate simplices are set to zero.

The Eilenberg-Zilber map∇ : C(X)⊗C(Y )→ C(X×Y ) is a map of differential
coalgebras. The Alexander-Whitney map ∆ : C(X × Y ) → C(X) ⊗ C(Y ) and
the Alexander-Whitney diagonal ∆ : C(X) → C(X × X) → C(X) ⊗ C(X) are
not. Hence, in general, the Alexander-Whitney diagonal does not define a map of
Adams-Hilton models ΩC(X)→ Ω(C(X)⊗ C(X)), But recall [9, 23]

Theorem 9.1. a) The Eilenberg-Zilber map ∇ : C(X)⊗C(Y )→ C(X × Y ) is
a chain equivalence.

b) There is a Künneth map ΩC⊗ΩD → Ω(C⊗D) which is a chain equivalence.

If the homology HΩX is flat over the ground ring, then a diagonal is defined
by the composition

∆ : HΩC(X)
Ω∆−−→ H(ΩC(X ×X))

Ω∇←−− H(Ω(C(X)⊗ C(X))) ∼= H(ΩC(X))⊗H(ΩC(X)).

This diagonal makes HΩC(X) into a Hopf algebra isomorphic to the Hopf algebra
HΩX.

The definition of this diagonal depends on the fact that C(X) is not just any
differential coalgebra but is the chains on a space or simplicial set. For an arbitrary
differential coalgebra, it does not exist.

There is no way to define a coalgebra structure in the homology of an Adams
Hilton model ΩC so that two things are satisfied. One, if C → D is a morphism
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of differential coalgebras which is a homology equivalence, then the induced map
ΩC → ΩD should be an isomorphism of coalgebras. We already know that it is an
isomorphism of algebras. Two, if C = C(X) = the chains on a space X, then there
should be isomorphism of coalgebras HΩC ∼= HΩX. We already know that it is an
isomorphism of algebras.

In short, there is no homologically invariant way to define a coalgebra structure
in the cobar construction which will be compatible with geometry.

To see this, start with

Theorem 9.2. If X is a connected space and the homology HX is free over
the ground ring, then there is a homology isomorphism of differential coalgebras
HΣX → C(ΣX)

Proof. Let Y be any connected simplicial set with only one element in degree
0. Form the simplical cone y ∗ Y and the simplicial suspension y ∗ Y/Y. Then it is
easy to see that every element of positive degree is primitive under the Alexander-
Whitney diagonal ∆ : C(y ∗ Y/Y ) → C(y ∗ Y/Y ) ⊗ C(y ∗ Y/Y ). In other words,
C(y ∗ Y/Y ) is a coalgebra with a trivial coproduct. If HY is free, we can pick
a basis of cycles which defines an equivalence of differential coalgebras H(ΣY ) =
H(y ∗ Y/Y )→ C(y ∗ Y/Y ).

Let Y = SX = the singular chains on a space X. We can assume that there
is only one zero simplex. Note that there is an embedding C(y ∗ Y/Y ) ⊂ CΣX
which is an equivalence. Composition gives an equivalence of differential coalgebras
HΣX → C(y ∗ Y/Y )→ CΣX.

�

Corollary 9.3. If X is connected then HΩΣX = ΩΣHX = T (H̄X) as alge-
bras.

Of course, the Bott-Samelson theorem [4] says more. In fact, HΩΣX =
ΩΣHX = T (H̄X) as Hopf algebras where the diagonal is determined by the map
X → ΩΣX.

Let Z = ΣCP∞ and let W =
∨∞
n=1 S

2n+1. The coalgebras HZ and HW are
isomorphic trivial coalgebras but the homologies of the loop spaces are isomorphic
as algebras and not as Hopf algebras.

HΩZ = T (x1, x2, x3, . . . ), HΩW = T (y1, y2, y3, . . . )

where deg(xn) = deg(yn) = 2n, the y2n are all primitive, but

∆xn = 1⊗ xn + x1 ⊗ xn−1 + · · ·+ xn−1 ⊗ x1 + xn ⊗ 1.

In the first three nontrivial dimensions, a basis for the integral primitives of
HΩZ = T (x1, x2, x3, . . . ) is

x1, 2x2 − x2
1, x2x1 − x1x2, 3x3 − 3x2x1 + x3

1.

Hence, HΩZ is not primitively generated but HΩW is.
On the other hand, over the rationals, a theorem of Milnor and Moore shows

that all connected Hopf algebras with commutative and associative diagonal are
primitively generated [20, 21]. Hence, these Hopf algebras are isomorphic over the
rationals.
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10. Commutative coalgebras

Let τ : C → A and σ : D → B be twisting functions. Define

τ � σ : C ⊗D → A⊗B
to be τ ⊗ 1 on C ⊗ 1, 1 ⊗ σ on 1 ⊗ D, and 0 on the standard complement to
C �D = C ⊗ 1 + 1⊗D in C ⊗D.

Then it is straightforward to show

Lemma 10.1. a) τ � σ : C ⊗D → A⊗B is a twisting function.
b) The tensor product of twisted tensor products is a twisted tensor product,

that is,
(C ⊗τ A)⊗ (D ⊗σ B) ≡ (C ⊗D)⊗τ�σ (A⊗B).

It is equally straightforward to show

Lemma 10.2. Let C is a differential coalgebra with a commutative diagonal.
a) Then the diagonal ∆ : C → C ⊗ C is a morphism of differential coalgebras.
b) If we define a coalgebra structure in the cobar construction ΩC = T (s−1C̄)

by making the generators s−1C̄ primitive, that is,

∆(s−1c) = s−1c⊗ 1 + 1⊗ s−1c,

then the cobar construction becomes a differential Hopf algebra.

Recall a theorem of Browder [5].

Theorem 10.3. If A is a primitively generated Hopf algebra over a field, then
the homology Hopf algebra HA is also primitively generated.

Browder actually stated this theorem only for Hopf algebras of finite type but,
since every primitively generated Hopf algebra is a direct limit of primitively gen-
erated Hopf algebras of finite type, the general case follows.

Hence,

Theorem 10.4. With this Hopf algebra structure over a field, the homology
HΩC is a primitively generated Hopf algebra whenever C is a commutative differ-
ential coalgebra.

We do not assert that the above is the Hopf algebra structure on the homology
HΩX of the loop space even when X is a simply connected space, C = HX, and
there is a homology equivalence of differential coalgebras HX → CX. Of course
the algebra structures agree.

Let C and D be commutative differential coagebras, let A and B be differential
algebras, and let τ : C → A and σ : D → B be twisting functions.

It is easy to check that:

Lemma 10.5. If f : C → D and g : A → B are morphisms which commute
with the twisting functions, that is, g ◦ τ = σ ◦ f , then f ⊗ g : C ⊗τ A→ D⊗σ B is
a map of differential comodules with respect to the map f : C → D.

An immediate corollary is

Corollary 10.6. If C is a differential coagebra with a commutative diagonal,
then the diagonal maps define a map

∆⊗∆ : C ⊗τ ΩC → (C ⊗ C)⊗τ�τ (ΩC ⊗ ΩC)
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of algebraic path spaces which is a map of differential comodules with respect to the
map ∆ : C → C ⊗ C.

When C is a commutative differential coalgebra over the ground ring R and
HΩC is flat over the ground ring, the above has the consequence [9, 16, 23] that
the there is an isomorphism of Hopf algebra structures

HΩC ≡ CotorC(R,R).

Now suppose 2 is a unit in the ground ring and that C is a differential coalgebra
with a commutative diagonal. Then Quillen observed that the cobar construction
ΩC = T (s−1C̄) = UL(s−1C̄) is the universal enveloping algebra of the differential
Lie algebra L = L(s−1C̄) where L is primitive and is the free Lie algebra generated
by the desuspension of the reduced coalgebra C̄. In terms of L, the differential is
given by

d(s−1c) = −s−1dc+ (1/2)
∑

(−1)deg c
′
[s−1c′, s−1c”]

where

∆c = c⊗ 1 + 1⊗ c+
∑

c′ ⊗ c”.

11. Rational loop spaces

The theorem of Milnor and Moore [20, 21, 19] is decisive for the rational
homology of loop spaces

Theorem 11.1. Over a field of characteristic zero, every connected Hopf al-
gebra A with commutative and associative diagonal is primitively generated and is
isomorphic to the universal enveloping algebra on its Lie algebra P (A) of primitives,
that is,

UP (A)
∼=−→ A.

Moreover, if A = HY where Y is a connected group-like space, that is, a connected
homotopy associative H-space with a homotopy inverse, then the rational Hurewicz
map is an isomorphism of the rational homotopy Lie algebra (πY )⊗Q onto PHY.

The second part of this theorem follows from results of Cartan and Serre on the
vanishing of rational k invariants of H-spaces. Hence, the rational Hurewicz map
is an isomorphism (πY ) ⊗ Q → PHY and Milnor-Moore gives an isomorphism of
rational Hopf algebras U(πY )⊗Q→ HY.

We conclude by pointing out, as did Quillen [25], that the result of Milnor and
Moore fits into and can be derived from his rational homotopy theory.

If CN = C denotes the normalized chains, then the diagonal map on the chains
of the loop space

CN (∆) : CN (ΩX)→ CN (ΩX × ΩX)

induces in homology the map of differential Cotors: (See 10,16.2 , also 10.21.2,
[23].)

Cotor∆(R,R) : CotorC
N (X)(R,R)→ CotorC

N (X×X)(R,R)

which, over a field, composes with the Eilenberg-Zilber and Künneth isomorphisms

CotorC
N (X×X)(R,R)

Cotor∇(R,R)←−−−−−−−−− CotorC
N (X)⊗CN (X)(R,R)

∼= CotorC
N (X)(R,R)⊗ CotorC

N (X)(R,R)
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to give a coalgebra structure compatible with geometry. With the normalized chains
the Eilenberg-Zilber map is both an equivalence and a map of differential coalgbras.
Hence, it induces a map of Cotors. The Alexander-Whitney map

CN (X ×X)
∆−→ CN (X)⊗ CN (X)

is not a map of differential coalgebras and hence cannot be used to induce a map
of Cotors.

Recall that Quillen constructed a functor from simply connected 1-reduced
simplicial sets to simply connected commutative differential coalgebras over the
rationals, X 7→ CQ(X) having the properties that there is a natural isomorphism
of coalgebras H(X;Q) ∼= HCQ(X) and a natural isomorphism of Lie algebras
(πΩX)⊗Q ∼= HL(s−1C̄Q(X)).

We can substitute Quillen’s commutative cochains CQ(X) for the normalized
chains CN (X) and change the way in which HΩCQ(X) is seen to be a coalgebra

(and thus a Hopf algebra). We use the Alexander-Whitney map CQX
∆−→ CQ(X)⊗

CQ(X) which now is a map of differential coalgebras. In fact, it is the unique map of
commutative differential coalgebras which projects to the identities on both factors.

Just as before, the diagonal in the loop space ΩX → ΩX × ΩX is represented
in homology by the map of differential Cotors

Cotor∆(Q,Q) : CotorC
Q(X)(Q,Q)→ CotorC

Q(X×X)(Q,Q).

(This requires that Quillen’s chain functor gives a Serre spectral sequence, 10,16.2.
10.21.1 [23], to fibrations. And it does.) But now, since the Alexander-Whitney
map is a map of differential coalgebras, we can compose with the isomorphisms

CotorC
Q(X×X)(Q,Q)

Cotor∆(Q,Q)−−−−−−−−−→ CotorC
Q(X)o×CQ(X)(Q,Q)

∼= CotorC
Q(X)(Q,Q)⊗ CotorC

Q(X)(Q,Q)

to give a coalgebra structure which is isomorphic to that in the rational homology
of the loop space.

This coalgebra structure “covers” ( is induced by) the Alexander-Whitney map
of differential coalgebras on the base

CQX
∆−→ CQX ⊗ CQX.

Hence, Corollary 10.6 applies to show that the diagonal in the rational homol-
ogy of the loop space

∆ : HΩX;Q)→ HΩX;Q)⊗HΩX;Q)

is given by that in

HΩCQ(X) = CotorC
Q(X)(Q,Q)

which is a primitively generated Hopf algebra.
By the Poincare Birkhoff Witt theorem [20, 21, 19], there is an isomorphism

of differential coalgebras UL ∼= SL where SL is the free commutative algebra
generated by the differential vector space which is the connected Lie algebra L. It
follows that there are isomorphisms

HUL ∼= HSL ∼= SHL ∼= UHL.



18 JOSEPH A. NEISENDORFER

Since ΩCQ(X) = UL(s−1C̄Q(X)) is primitively generated and there are natural
isomorphisms of Hopf algebras

H(ΩX;Q) ∼= HΩCQ(X) ∼= HUL(s−1C̄Q(X)) ∼= UHL(s−1C̄Q(X)) ∼= U(πΩX⊗Q).

Quillen’s methods have given another proof of the Milnor-Moore result, at least for
loop spaces.

Hence, if X is simply connected, then HΩCQ(X) ∼= HΩX is an isomorphism of
primitively generated rational Hopf algebras. Therefore, in contrast to the integral
case where we do not have commutative cochains, we see that there is a natural Hopf
algebra structure on the rational Hopf algebra HΩCQ(X) which is both invariant
under homological equivalence of the commutative coalgebra C and which agrees
with the structure on the rational homology Hopf algebra of the loop space.

12. Quillen’s model category of commutative simply connected rational
differential graded coalgebras

When doing rational homotopy theory, it is sometimes better to forget about
spaces and instead focus directly on one of the homotopy equivalent model cate-
gories, for example, Quillen’s model category C of commutative simply connected
differential graded coalgebras over the rationals [25]. This model category structure
consists of homology isomorphisms as weak equivalences, injections as cofibrations,
and sufficient fibrations are given by Cartan’s constructions.

We remark that, if the ground ring is a field k of finite characteristic, the above
does not provide a model category structure. Merely consider the dual problem of
commutative differential graded algebras. It is easy to see that one cannot factor

k → A
p−→ P [x] where A is acyclic, p is an epimorphism, and x is a generator of

degree 2.
Quillen constructs his fibrations with reference to the category of connected

differential graded Lie algebras L over the rationals and his cofree coalgebra functor
C : L → C. The differential in C(L) = S(sL) (= the symmetric coalgebra) is a sum
of two parts, first, the suspension of that from L and, second, a part coming from
the Lie bracket of L. The second part is the dual of a construction due to Koszul
[17]. For more details see [25].

Quillen obtains enough fibrations E → B by starting with a fibration in L,
that is, with a short exact sequence of differential graded Lie algebras

0→ L3 → L2 → L1 → 0

and then forming pullback diagrams

E → C(L2)
↓ ↓
B → C(L1).

As a differential comodule

C(L2) = C(L1)⊗ C(L3)

over the “base” differential coalgebra C(L1) with “fibre” the subcomplex C(L3).
That is, C(L2) is a Cartan construction [23] over C(L1) with fibre C(L3). Hence,
the fibration E → B is a Cartan construction over B with fibre C(L3), that is,
E = B ⊗ C(L3) as a B differential comodule with C(L3) a subcomplex. We have
used left constructions but we could have used right constructions if we so desired.
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Theorem 12.1. In the category C, the cotensor product gives a pullback diagram

A2CB → B
↓ ↓
A → C.

We need to show three things: 1) A2CB is a commutative coalgebra. 2) the
diagram is a commutative diagram of coalebras. 3) it has the universal mapping
property.

First of all, if f : X → A and g : X → B are maps of commutative differential

graded coalgebras which are equal when projected to C, then X
∆−→ X ⊗X f⊗g−−−→

A⊗B is a map of differential coalgebras which projects to f and g. Sincemap(X,A⊗
B) = mapX,P (A ⊗ B)) = map(X,P (A) ⊕ P (B)) is determined by projection to
the primitives, it is the unique such map.

On the other hand, since map(X,A⊗C⊗B) = map(X,P (A)⊕P (C)⊕P (B)),
the above map factors through A2CB. It is therefore sufficient to know that
A2CB ⊆ A⊗B is a subcoalgebra.

It is instructive to consider the dual situation. Suppose f, g : X → Y are two
maps of commutative differential graded algebras. The linear coequalizer of these
maps is Y/{fx− gx|x ∈ X}. The algebra coequalizer is Y/{y(fx− gx)|x ∈ X, y ∈
Y }. Clearly, if there is a linear map h : Y → X which is a common section to both,
fh = gh = 1Y , then the linear and algebra coequalizers are the same.

The dual is:

Lemma 12.2. Suppose f, g : A → B are two maps of commutative differential
graded algebras. If there is a linear map k : B → A which is a common retraction
to both, kf = kg = 1A, show that the linear equalizer ker(f − g) : A → B is the
same as the coalgebra equalizer.

Proof. Using k is easy to see that ∆(ker(f − g)) ⊆ ker(f − g)⊗A. Similarly,
∆(ker(f − g)) ⊆ A⊗ ker(f − g) and thus ∆(ker(f − g)) ⊆ ker(f − g)⊗ ker(f − g).
Hence ker(f − g) ⊆ A is a subcoalgebra. That is, the the linear equalizer is a
subcoalgebra and therefore is the coalgebra equalizer.

�

In particular, the linear equalizer

A2CB ⊆ A⊗B
1⊗∆,∆⊗1−−−−−−→ A⊗ C ⊗B

is a subcoalgebra and hence is the coalgebra equalizer (since there is a common
retraction 1A ⊗ ε⊗ 1B where ε : C → Q is the counit).

The Eilenberg-Moore approximation theorem is exactly Corollary 10.14.4 of
[23].

Theorem 12.3. If

A2CB → B
↓ ↓
A → C.

is a diagram with A→ C a right Cartan construction (fibration) over C, then there
is an isomorphism

H(A2CB) ∼= CotorC(A,B).
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There is a corresponding version of the above theorem for pullbacks of several
variables [23]. In short, we have everything we need to study the multiplication
and comultiplication in the loop space ΩC. (We work over the rationals but we
observe that the above three results are true over any field.)

The map in Corollary 10.6 defines a commutative differential coalgebra struc-
tures on C ⊗τ ΩC and on ΩC ⊗τ C. Hence, these are suitable models for the path
space fibrations and, in particular, ΩC = Q2CC⊗τ ΩC = ΩC⊗τ C2CQ is a model
for the loop space.

Corollary 10.6 identifies the coalgebra structure in ΩC as the primitively gen-
erated one and the equivalence ΩC ⊗τ C ⊗τ CΩC → ΩC identifies the multiplica-
tive structure with the tensor multiplication just as in section 7. In particular,
HΩC = HT [s−1C̄] = HUL(s−1C̄) = UHL(s−1C̄) = CotorC(Q,Q) as a primi-
tively generated Hopf algebra.

13. Homology of the double loops on spheres

Since simplicial methods are not often amenable to computation, there is often
no direct way of using the Eilenberg-Moore methods to compute the coalgebra
structure in the homology of loop spaces. There are sometimes ways to get around
this.

The easiest example is already given by the Bott-Samelson theorem. If X is a
connected space and the homology HX is a free module, then there is a coalgebra
equivalence HΣX → CΣX and an isomorphism of tensor algebras

T (H̄X)→ HΩΣX →

with the coalgebra structure determined by the fact that X → ΩΣX induces a map
of homology coalgebras.

We want to close with a more complicated example. This computation was
originally done by different means, using the Serre spectral sequence, independently
by Moore and Toda. [22, 26] Here we use it to illustrate how the Eilenberg-Moore
methods can be used to compute without the use of a spectral sequence, except
for one use of the Serre integral cohomology spectral sequence to compute the
Bockstein differentials.

Theorem 13.1. a) If p is an odd prime, then the mod p homology of the double
loop space of an odd sphere is

HΩ2S2n+1 '−→ E(u, τ1, τ2, . . . )⊗ P (σ1, σ2, . . . )

as a primitively generated Hopf algebra with

deg(u) = 2n− 1, deg(τk) = 2pkn− 1, deg(σk) = 2pkn− 2.

Furthermore, the first Bockstein differential is given by

β1u = 0, β1τk = σk, β1σk = 0.

b) If p = 2, then the mod 2 homology of the double loop space of a sphere is

HΩ2Sm+1 '−→ P (ξ0, ξ1, ξ2, . . . )

as a primitively generated Hopf algebra with deg(ξk) = 2km− 1. Furthermore, if m
is even, the first Bockstein differential is given by β1ξ0 = 0 and β1ξk = (ξk−1)2 for
k ≥ 1.
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Remark: If p is any prime, the even dimensional case reduces to the odd di-
mensional case via the following isomorphism [23] of primitively generated mod p
Hopf algebras

H(Ω2S2n+2) = H(ΩS2n+1)⊗H(ΩS4n+3).

This isomorphism is also compatible with the Bockstein differentials.
If p is an odd prime, then this follows from Serre’s splitting of spaces localized

at p

ΩS2n+2 ' S2n+1 × ΩS4n+3.

Unless n = 1, 2, or 3, this splitting is not valid localized at 2. We have only
the totally nonhomologous to zero fibration sequence given by the second Hopf
invariant

S2n+1 → ΩS2n+2 h2−→ ΩS4n+3.

But 12.5 below says that the loop of this sequence is also totally nonhomologous
to zero and 12.6 shows that HΩ2S2n+2 is primitively generated. The Bockstein
differentials are completely determined by their naturality with respect to the maps
in the fibration sequence.

Hence, the even dimensional case reduces to the odd dimension case whenever
the prime is even or odd.

The first thing we need to do is to show we can use homology instead of chains.
Hence,

Theorem 13.2. With any coefficients, there is a homology equivalence of dif-
ferential coalgebras

T [x] = HΩSm+1 f−→ CΩSm+1

where deg(x) = m.

Proof. We use here the loop space with the strictly associative multiplication
so that the chains CΩSm+1 are an associative differential Hopf algebra. Since
ΩSm+1 is m − 1 connected, the chains are equivalent to those from the Eilenberg
subcomplex where all simplices are restricted to having their m − 1 skeleton at
the basepoint. If we choose a cycle c from this subcomplex which represents the
m dimensional homology generator, then it is certainly primitive. Hence, the map
defined by f(xi) = ci is the required homology equivalence of differential coalgebras.

�

Therefore,

Theorem 13.3. With any coefficient ring R,

HΩ2Sm+1 = CotorT [x](R,R) = HΩT [x]

as algebras.

If x has even degree, then T [x] is a commutative coalgebra, It follows that,
over a field R, CotorT [x]R,R) = HΩT [x] is actually a primitively generated Hopf
algebra but it is possible that the coalgebra structures in the above theorem are
different. The same remark holds if x has odd degree and the field has characteristic
2.
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If p is odd, assume that deg(x) = m = 2n is even. Then the tensor Hopf
algebra T [x] splits as a coalgebra into tensor product of coalgebras

T [x] =
⊗
i≥0

Tp[x
pi ]

where

Tp[x
pi ] =< 1, xp

i

, x2pi , . . . , x(p−1)pi > .

If p = 2, then deg(x) = m can be either even or odd and, In this case, the
tensor Hopf algebra T [x] splits as a coalgebra into

T [x] =
⊗
i≥0

T2[x2i ]

where T2[x2i ] = E[x2i ] =< 1, x2i > is the exterior coalgebra.
The Künneth theorem yields

Theorem 13.4. Let p be a prime and let T [x] is a tensor algebra on a generator
x of degree m. Assume either that m is even or that p = 2, Then there is an
isomorphism of primitively generated Hopf algebras

CotorT [x](Z/pZ,Z/pZ) =
⊗
i≥0

CotorTp[xp
i
](Z/pZ,Z/pZ).

We now compute the above Cotors:

Theorem 13.5 (Lemma). As primitively generated Hopf algebras:
a) If p is an odd prime and Tp[x] is the coalgebra < 1, x, x2, . . . , xp−1 > with x

of even degree 2n, then

CotorTp[x](Z/pZ,Z/pZ) = E(s−1x)⊗ P (z)

where deg(s−1x) = 2n− 1,deg(z) = 2pn− 2.
b) If p = 2 and x has arbitrary degree m, then

CotorE[x](Z/2Z,Z/2Z) = P (s−1x)

where deg(s−1x) = m− 1.

We proceed to prove this lemma using duality.

Proof. If C is a finite type commutative coalgebra which is free over R, then
the dual A = C∗ is a commutative algebra and we have that TorA(R,R) is a Hopf

algebra which is dual to the Hopf algebra CotorC(R,R). If we use Z(p) coefficients
and set C = Tp(x) we get that A = Pp(y) = P (y)/(yp) = the truncated polynomial
algebra with deg(y) = deg(x).

With p an odd prime and Z(p) coefficients, consider the complex

R = A⊗ E(s)⊗ Γ(t)

with deg(s) = deg(x)− 1, deg(t) = pdeg(x) and differential the derivation defined
by

dy = 0, ds = y, dt = syp−1.

R is an acyclic complex and a differential algebra. It provides a resolution of Z(p)

over the algebra A and the multiplication is a map of resolutions

R⊗R → R
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and induces a multiplication on

R⊗A Z(p) = E(s)⊗ Γ(t).

Since the latter has zero differential,

TorA(Z(p), Z(p)) = E(s)⊗ Γ(t)

as algebras.
If p is odd, both the elements s and t must be primitive for degree reasons.

Hence, in this case, we have

TorA(Z(p), Z(p)) = E(s)⊗ Γ(t)

as Hopf algebras. It follows that

CotorTp(x)(Z(p), Z(p)) = E(s−1x)⊗ P (z)

as Hopf algebras. Of course, we can reduce this result mod p to the desired result
with Z/pZ coefficients.

If p = 2, consider the complex over the ring Z/2Z given by

R = A⊗ Γ[s]

with deg(s) = deg(x)− 1 and with the derivation defined by

dy = 0, dγk(s) = yγk−1(s).

In particular, we have

dγ1(s) = ds = yγ0(s) = y, dγ2(s) = yγ1(s) = ys.

It is an acyclic differential Hopf algebra. In particular, both the multiplication
and the comultiplication

R⊗R → R, R → R⊗R
are maps of resolutions. Note that y and s are primitive but

∆(γ2(s)) = γ2(s)⊗ 1 + s⊗ s+ 1⊗ γ2(s).

This is dual to the statement that the square of the 1 dimensional class is the 2
dimensional class.

It follows that
TorA(Z/2Z,Z/2Z) = Γ[s]

as a Hopf algebra.
Hence,

CotorT2(x)(Z/2Z,Z/2Z) = P (s−1x)

as a Hopf algebra.
�

We conclude that we have proved the algebra part of 12.1.

Theorem 13.6. Let p be a prime.
a) If p is odd, there is an isomorphism of algebras

H(Ω2S2n+1;Z/pZ) = E(u, τ1, τ2, . . . )⊗ P (σ1, σ2, . . . )

where deg(u) = 2n− 1, deg(τi) = 2pin− 1, and deg(σi) = 2pin− 2.

b) If p = 2, there is an isomorphism of algebras

H(Ω2Sm+1;Z/2Z) = P (ξ0, ξ2, . . . )
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where deg(ξi) = 2im− 1.

That the results in 12.6 are isomorphisms of primitively generated Hopf algebras
follows from the dual of a result of Milnor-Moore [20, 21].

Theorem 13.7. Suppose that B is a connected Hopf algebra over Z/pZ with
commutative multiplication. Let ξ : B → B be the p-th power operation ξ(x) = xp

and consider the subHopf algebra ξB ⊆ B of all p-th powers. There is an exact
sequence

0→ P (ξB)→ P (B)→ Q(B).

In particular, the kernel of the map P (B)→ Q(B) is concentrated in degrees divis-
ible by p.

The dual to the above says, if D is a connected Hopf algebra over Z/pZ with
commutative comultiplication, then the cokernel of P (D)→ Q(D) is concentrated
in degrees divisible by p. Hence, the Hopf algebras in 12.6 are primitively generated
and isomorphic as Hopf algebras.

We complete the proof of 12.1 by determining the first Bockstein differentials
β1. We start with an explicit computation over Z(p).

Theorem 13.8. For all primes p,

H2pn−2(Ω2S2n+1;Z(p)) = Z/pZ.

Proof. Consider the Z(p)cohomology Serre spectral sequence of the path space
fibration sequence

Ω2S2n+1 → PΩS2n+1 → ΩS2n+1.

Since the Z(p) cohomology of the base is the divided power algebraH∗(ΩS2n+1;Z(p)) =
Γ[y] with deg(y) = 2n, the classic argument shows that

H2pn−2(Ω2S2n+1;Z(p)) = 0, H2pn−1(Ω2S2n+1;Z(p)) = Z/pZ

and hence H2pn−2(Ω2S2n+1;Z(p)) = Z/pZ. �

It follows that we must have
a) if p is an odd prime, then β1τ1 = σ1 in dimension 2pn− 2.
b) if p = 2, then β1ξ1 = (ξ0)2.
Now consider the p−th Hopf invariant hp : ΩS2n+1 → ΩS2pn+1. Localized at

p, we have a fibration sequence which is totally nonhomologous to zero

F → ΩS2n+1 hp−→ ΩS2pn+1

where HF = Tp[x2n] the Hopf invariant induces the map

hp : HΩS2n+1 = T [x2n] =
⊗
i≥0

Tp[x
pi

2n]→ HΩS2pn+1 = T [x2pn] =
⊗
i≥0

Tp[x
pi

2pn]

such that for i ≥ 1

hp(Tp[x
pi

2n]) = Tp[x
pi−1

2pn ].

It follows that the loop

Ωhp : Ω2S2n+1 → Ω2S2pn+1

satisfies, for i ≥ 2, up to units,
a) if p is odd,

Ωhp(τi(2n) = τi−1(2np), Ωhp(σi(2n)) = σi−1(2np)
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b) and if p = 2,

Ωh2(ξi(2n)) = ξi−1(4n), Ωh2(ξi−1(2n))2 = (ξi−1(4n))2.

Hence, whenever we know the formula for β1τi(2n), we know the formula
for β1τi(2np), and naturality gives the formula for β1τi+1(2n). And similarly for
β1ξ(2n). Hence, induction shows

Theorem 13.9. For all i ≥ 1, β1τi = σi if p is an odd prime and β1ξi = (ξi−1)2

if p = 2.

Since the first Bockstein makes the mod p homology acyclic except in the
bottom nontrivial dimensions, we get the following corollary which is crucial in the
study of the odd primary exponents of the homotopy groups of spheres and Moore
spaces. [7, 23]

Theorem 13.10. For any prime p, the homology localized at p of Ω2S2n+1 has
a Z(p) in dimension 2n−1 and torsion of order at most p in all higher dimensions.

14. Closing remarks on the Hopf algebra structure in the cobar
construction

When X is a simply connected space, then, over a field, HΩC(X) is a Hopf
algebra. At first, it seems that the comultiplication is more fundamental since it
is induced by the diagonal map of spaces X → X ×X while the multiplication is
induced by a map X ×X → X only when X is an H space.

In fact, the multiplication is more fundamental since HΩC has a multiplication
whenever C is a differential coalgebra. Although we do not show it here, this
multiplication is like the multiplication in the fundamental group of a loop space in
the following sense. In the presence of another multiplication, for example, when
C is a differential Hopf algebra (and the multiplication C ⊗ C → C is a map of
differential coalgebras), the resulting two multiplications on HΩC agree and both
are (graded) commutative [23].

When C is not a commutative coalgebra, HΩC may not have a comultiplication
since the diagonal map C → C ⊗ C is not a map of differential coalgebras. Even
when C is a commutative coalgebra, the resulting comultiplication on HΩC, which
over a field is always primitively generated, may have little to do with geometry.

Over a field, HΩC(X) is a coalgebra (and thus a Hopf algebra) by virtue of the
map CX → C(X×X) and the Eilenberg Zilber equivalence CX⊗CX → C(X×X).
It has little to do with the Alexander Whitney map CX → CX ⊗CX since this is
not a map of coalgebras. But, most important, this coalgebra structure in HΩC(X)
does correspond to the comultiplication in the homology of the loop space since it
corresponds to the diagonal in the loop space.

The ambiguity in the coalgebra structures on HΩC(X) disappears when we
have rational coefficients. They are the same and both are primitively generated.

References

[1] J. F. Adams. On the cobar construction. Proc. Nat. Acad. Sci. U.S.A., 42:409–412, 1956.

[2] J. F. Adams and P.J. Hilton. On the chain algebra of a loop space. Comm. math. Helv.,
30:305–330, 1956.

[3] H-J. Baues. The cobar construction as a Hopf algebra. Invent. math., 132:467–489, 1998.
[4] R. Bott and H. Samelson. On the Pontrjagin product in spaces of paths. Comment. Math.

Helv., 27:320–337, 1953.



26 JOSEPH A. NEISENDORFER

[5] W. Browder. On differential Hopf algebras. Trans. Amer. Math. Soc., 107:153–176, 1963.

[6] H. Cartan. Algebres d’Eilenberg-MacLane, Seminaire Henri Cartan 1954/55, exposes 2-11.

Ecole Normal Supérieure, 1955.
[7] F. R. Cohen, J. C. Moore, and J. A. Neisendorfer. Torsion in homotopy groups. Ann. of

Math., 109:121–168, 1979.

[8] S. Eilenberg and J. C. Moore. Adjoint functors and triples. Illinois J. Math., 9:381–398, 1965.
[9] S. Eilenberg and J. C. Moore. Homology and fibrations i, coalgebras, cotensor product and

its derived functors. Comment. Math. Helv., 40:199–236, 1966.

[10] E. Getzler and P.G. Goerss. A model category structure for differential graded coalgebras.
preprint, 1999.

[11] P.G. Goerss and J.F. Jardine. Simplicial homotopy theory. Birkhauser, 1999.

[12] K. Hess. Homotopic Hopf-Galois extensions: foundations and examples. Geometry and Topol-
ogy Monographs, 16:79–132, 2009.

[13] K. Hess, M. Kedziorak, E. Riehl, and B. Shipley. A necessary and sufficient condition for
induced model structures. preprint, 2015.

[14] K. Hess, P-E. Parent, J. Scott, and A. Tonks. A canonical enriched Adams-Hilton model for

simplicial sets. Advances in Math, 207(2):847–875, Sept 2005.
[15] K. Hess and B. Shipley. The homotopy theory of coalgebras over a comonad. Proc. London

Math. Soc., 108(2):484–516, 2014.

[16] D. Husemoller, J. C. Moore, and J. D. Stasheff. Differential homological algebra and homo-
geneous spaces. Jour. Pure Appl. Alg., 5:113–185, 1974.

[17] J.L. Koszul. Homologie et cohomology des algebres de Lie. Bull. Soc. Math. France, 85:239–

262, 1957.
[18] S. MacLane. Homology. Springer-Verlag, 1963.

[19] J. P. May and K. Ponto. More Concise Algebraic Topology. U. of Chicago, 2012.

[20] J. W. Milnor and J. C. Moore. On the structure of Hopf algebras. Ann. of Math., 81:211–264,
1965.

[21] J. W. Milnor and J. C. Moore. On the structure of Hopf algebras (preprint. 1959). In H. Bass
and T.Y. Lam, editors, Collected papers of John Milnor, V, Algebra, pages 7–36. Amer.

Math. Soc., 2011.

[22] J. C. Moore. The double suspension and p-primary components of the homotopy groups of
spheres. Boll. Soc. Mat. Mexicana, 1:28–37, 1956.

[23] J. A. Neisendorfer. Algebraic Methods in Unstable Homotopy Theory. Cambridge University

Press, 2009.
[24] D. Quillen. Homotopical algebra. Springer-Verlag, 1967.

[25] D. Quillen. Rational homotopy theory. Ann. of Math., 90:295–295, 1969.

[26] H. Toda. On the double suspension E2. J. Inst. Polytech. Osaka City Univ. Ser. A, 7:103–145,
1956.

Department of Mathematics, University of Rochester, Rochester, NY 14625

E-mail address: jnei@math.rochester.edu


