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Preface

What is in this book and what is not

The purpose of this book is to present those techniques of algebraic topol-
ogy which are needed in the presentation of the results on the exponents of
homotopy groups which were proven by Cohen, Moore, and the author. It
was decided that all of the details of those techniques would be completely
and honestly presented.

Homotopy groups with coefficients are fundamental to the whole enterprise
and have and will be useful in other things. The 2-primary theory was not
excluded but the fact that certain things are just not true for the 2-primary
case reinforces the eventual restriction, more and more, to the odd primary
case and finally to the case of primes greater than 3. The argument could
have been made that the exact sequences of these groups related to pairs
and to fibrations are all a consequence of the fundamental work of Barratt
and of Puppe on cofibration sequences and can be found as a special case in
the books of G. Whitehead or of E. H. Spanier. But the general theory does
not handle the low dimensional cases which correspond to the fundamental
group and the only way to provide an honest uniform treatment was to
present the whole theory in detail. So that is what is done.

Localization has undergone a revolution in the hands of Dror Farjoun and
of Bousfield. This new theory is incredibly general. It includes both the clas-
sical theory of inverting primes and of completion. It also includes exotic
forms of localization related to a theorem of Haynes Miller. Some simplifi-
cations can be made if one restricts localizations to simply connected spaces
or to H-spaces. It seemed to the author that not much is lost in terms of
potential applications by so doing. The same is true if no appeal is made
to the arcane theory of very large sets and if we restrict Dror Farjoun’s
fundamental existence proof so that the largest thing we have to refer to is
the least uncountable ordinal.

It seemed that localization should be presented in this new incarnation and
that application should be made to the construction of the Hilton-Roitberg
examples of H-spaces, to the loop space structures on completed spheres,
and to Serre’s questions about nonvanishing of infinitely many homotopy

xiii
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groups of a finite complex. The last application is not traditionally thought
to have anything to do with localization.

The author has been told that the theory of fibrations in cubical diagrams
is out of date and should be superseded by the more general theory of
limits and colimits of diagrams. Spiritually the author agrees with this.
But practically he does not. The cubical theory is quite useful and specific
and easier to present.

The theory of Hopf invariants due to James, Hilton, and Toda was cen-
tral to the proofs of the first exponent results for spheres. Since the new
methods give new exponent results, why do we include these? There are
several reasons. First, the 2-primary results of James have been substan-
tially improved by Selick but they have not been superseded, and the best
possible 2-primary bounds have not been found. In order to have any 2-
primary bounds on the exponents for the homotopy groups of spheres, we
still need James; and James and Hilton both give us the EHP sequences
which are still fundamental in the computations of unstable homotopy the-
ory. This latter reason is also applicable to Toda’s work on odd primary
components. He produces a useful factorization of the double suspension
in the odd primary case which leads to the odd primary EHP sequences.

Samelson products in homotopy theory with coefficients are the main tool
in the proofs of the exponent results of Cohen, Moore, and the author.
These products give the homotopy theory of loop spaces the structure of
graded Lie algebras with the exception of some unfortunate failure of the
Jacobi identity at the prime 3. This theory is included here together with an
important improvement on a theory of Samelson products over the loops
on an H-space. This improvement makes possible a simplification of the
main exponent proofs.

The homotopy and homology Bockstein spectral sequences are presented in
detail with particular attention paid to products in the spectral sequence
and to the convergence of the spectral sequence in the nonfinitely generated
case. It occurred to the author that no book on Bockstein spectral sequences
should be written without presenting Browder’s results on the unbounded-
ness of the order of the torsion in the homology of finite H-spaces. Even
though these results are well presented in the paper of Browder and in the
book of McCleary, the inclusion of these results is amply justified by their
beauty and by the remarkable fact that this growth in the order of the
torsion in homology is precisely opposite to the bounds on the order of the
torsion that we find in homotopy.
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The consideration of Samelson products in homotopy and their Hurewicz
representation as commutators in homology makes it vital to present a gen-
eral theory of graded Lie algebras and their universal enveloping algebras.
Even though it is not necessary for our applications, for the first time we
make no restrictions on the ground ring. It need not contain % We prove
the graded versions of the Poincaré-Birkhoff-Witt theorem and the related
tensor product decompositions of universal enveloping algebras related to
exact sequences. There is a similarity between free groups and free Lie alge-
bras. Subalgebras of free Lie algebras are free but they may not be finitely
generated even if the ambient Lie algebra is. Nonetheless, the generators
of the kernels of homomorphisms can often be determined.

The actual Eilenberg—Moore spectral sequence plays almost no role in this
book. But the chain model approximations that underlie this theory play an
essential role and are fully presented here. We restrict our treatment to the
case when the base is simply connected. This includes most applications and
avoids delicate problems related to the convergence of the approximations.
Particular attention is paid to products and coproducts in these models.
A new innovation is the connection to the geometry of loop multiplication
via an idea which is dual to an idea presented in a Cartan seminar by John
Moore.

In the chapter on exponents of the homotopy of spheres and Moore spaces,
most of the above finds application.

Finally, the major omission in this book on unstable homotopy theory is
that there is no systematic treatment of simplicial sets even though they
are used once in a while in this book. They are used to study Eilenberg—
Zilber maps, the Alexander—-Whitney maps, the Serre filtration, and Kan’s
construction of group models for loop spaces. Too bad, you can’t include
everything.

Prerequisites

The reader should be familiar with homology and homotopy groups. Homol-
ogy groups can be found in the classic book by S. Eilenberg and N. Steenrod
[44] or in many more recent books such as those of M. Greenberg and J.
Harper [49], A. Dold [33], E. Spanier [123], and A. Hatcher [51]. Homotopy
groups can be found in these books and also in the highly recommended
books by G. Whitehead [134] and P. Selick [114].

Some introduction to homology and homotopy is essential before beginning
to read this book. All of the subsequent suggestions are not essential but
some knowledge of them would be useful and historically enlightening.
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The books by G. Whitehead and P. Selick provide comprehensive intro-
ductions to homotopy theory and thus to the material in this book. White-
head’s book has an excellent treatment of Samelson products. Many of the
properties of Samelson products were originally proved by him. But all the
properties of Samelson products that we need are proved here.

Spectral sequences are much used in this book and we assume familiarity
with them when we need them. The exposition of spectral sequences by
Serre [116] remains a classic but there are alternative treatments in many
places such as the books of S. MacLane [77], E. Spanier, G. Whitehead,
and P. Selick. We regard the Serre spectral sequence as a basic tool and
use it to prove many things. The survey by J. McCleary [82] provides an
excellent overview of many spectral sequences, including the Eilenberg—
Moore spectral sequence to which we devote much of this book.

Obstruction theory to extending maps and homotopies is a frequent tool.
It is presented in the book of Whitehead. An important generalization to
sections of fibre bundles is in the book of N. Steenrod [125].

Postnikov systems are used in the treatment of the Hurewicz theorem for
homotopy groups with coefficients. Postnikov systems appear in the works
of Serre [117, 118]. The standard references are the books of G. Whitehead
and E. Spanier. The treatment in R. Mosher and M. Tangora [98] is brief
and very clear.

The main books on homological algebra are two, that of H. Cartan and S.
Eilenberg [23] and that of S. MacLane [77]. Cartan—Eilenberg’s treatment
of spectral sequences is used in this book in order to introduce products in
the mod p homotopy Bockstein spectral sequence. MacLane’s book is more
concrete and provides an introduction to the the details of the Eilenberg—
Zilber map and to the differential bar construction.

Ways to use this book

A book this long should be read in shorter segments. Many of the chapters
are self-contained and can be read independently. Here are some ideas as
to how the book can be broken up. Each of the paragraphs below is meant
to indicate that that material can be read independently with minimal
reference to the other chapters of the book.

The first chapter on homotopy groups with coefficients introduces these
groups which are the homotopy group analog of homology groups with
coefficients. The essence of it is captured in the Sections 1.1 through 1.7
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which start with the definition and end with the mod k& Hurewicz theo-
rem. It is basic material. When combined with Sections 6.7 through 6.9
on Samelson products and with some of the material on Bockstein spec-
tral sequences in Sections 7.1 to 7.6 it leads via Sections 9.6 and 9.7 on
the cycles in differential graded Lie algebras to a proof of the existence of
higher order torsion in the integral homotopy groups of an odd primary
Moore space.

The second chapter on localization is completely self-contained. Sections
2.1 through 2.7 cover the most important parts of the classical localiza-
tions and completions of topological spaces. After that, the reader can
choose from applications of Miller’s theorem to the nonvanishing of the
homotopy groups of a finite complex in Section 2.10, applications to the
Hilton—Roitberg examples, or to loop structures on completions of spheres.
This chapter is one of the most accessible in the book.

The short third chapter on Peterson—Stein formulas is a self-contained
introduction to these formulas and also to the theory of fibred cubes which
should be better known in homotopy theory. It is a quick treatment of
fundamental facts about fibrations.

The fourth chapter on Hilton—Hopf invariants and the EHP sequence intro-
duces many of the classical methods of unstable homotopy theory, for exam-
ple, the James construction, the Hilton-Milnor theorem, and the James
fibrations which underlie the EHP sequence. It contains a proof of James
2-primary exponent theorem for the spheres and some elementary compu-
tations of low dimensional homotopy groups. It is an introduction to some
geometric ideas which are often used in the study of homotopy groups of
spheres, especially of the 2-primary components.

The fifth chapter on James—Hopf and Toda—Hopf can serve as an odd pri-
mary continuation of the fourth chapter. It contains Toda’s odd primary
fibrations which give the odd primary EHP sequence and it contains the
proof of Toda’s odd primary exponent theorem for spheres. To study the
odd primary components of the homotopy of spheres, Toda realized that
it could be advantageous to decompose the double suspension into a com-
position which is different from the obvious one of composition of single
suspensions.

The sixth chapter on Samelson products contains a complete treatment of
Samelson products in odd primary homotopy groups. As mentioned above,
it can be combined with the Bockstein spectral sequence and material on
cycles in differential graded Lie algebras to prove the existence of higher
order torsion in the homotopy groups of odd primary Moore spaces. Of
course, the reader will need some knowledge of Chapter 1 here.
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The seventh chapter on Bockstein spectral sequences contains a presenta-
tion of Browder’s results on torsion in H-spaces which is completely inde-
pendent of the rest of the book. It is included because of the beauty of
the results and because it was the first deep use of the Bockstein spectral
sequence.

Chapters 8 and 9 present the theory and applications of graded Lie algebras
and their universal enveloping algebras. Particular attention is paid to free
Lie algebras and their subalgebras. Although this section contains many
results of purely algebraic interest, it also has geometric applications via
the Lie algebras of Samelson products and via the study of loop spaces
whose homology is a universal enveloping algebra. One of the applications
of differential graded Lie algebras is the previously mentioned higher order
torsion in the homotopy groups of odd primary Moore spaces.

Chapter 10 on differential homological algebra is the longest in the book
and only does half of the theory, albeit it is the harder half. This half
deals with the cobar construction of Adams and the so-called second quad-
rant Eilenberg—Moore spectral sequence. The presentation here emphasizes
the chain models that underlie the spectral sequences and which are often
more important and useful than the spectral sequences. Special emphasis
is placed on the not so obvious relation of the loop multiplication to the
homological algebra. It is the detailed foundation chapter for the next sec-
tion on odd primary exponent theorems and the loop space decompositions
which lead to them.

Chapter 11 on odd primary exponent theorems is the chapter which guides
the book in its selection of topics. It defines the central current. It uses
almost the whole book as background material. Nonetheless, it can be
read independently if the reader is willing to use isolated parts of the
book as background material. The necessary background material includes
homotopy groups with coefficients, their Bockstein spectral sequences, and
Samelson products in them. These are used to construct the product decom-
position theorems which are the basis for the applications to exponent the-
orems. Localization is necessary because, without it, these decomposition
theorems would not be valid. Free graded Lie algebras, their subalgebras
and universal enveloping algebras are the algebraic models for the loop
spaces we study and for their decomposition into topological products. It
is difficult to do but it can be read without reading all of the rest of the
book.

Finally, Chapter 12 is included because it is the other half of differential
homological algebra, that which is used to study classifying spaces, and
it is arguably the more important and useful half of the theory. It is also



Preface xix

often the easier half and it contains the beautiful applications of Stiefel—
Whitney classes to non-immersion and non-parallelizability results for real
projective spaces. It would have been a shame not to include it.
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Introduction to unstable homotopy theory

Computation of the homotopy groups m,(X) of a topological space X has
played a central role in homotopy theory. And knowledge of these homo-
topy groups has inherent use and interest. Furthermore, the development
of techniques to compute these groups has proven useful in many other
contexts.

The study of homotopy groups falls into three parts.

First, there is the computation of specific homotopy groups m,(X) of
spaces. This may be traced back to Poincaré [106] in the case n = 1:

Poincaré: 71 (X)/[m (X), w1 (X)] is isomorphic to Hy(X).

Hurewicz [62] showed that, in the simply connected case, the Hurewicz
homomorphism provides an isomorphism of the first nonzero m,(X) with
the homology group H,(X) with n > 1:

Hurewicz: If X is an n — 1 connected space with n > 2, then m,(X) is
isomorphic to Hy(X).

Hopf [58] discovered the remarkable fact that homotopy groups could be
nonzero in dimensions higher than those of nonvanishing homology groups.
He did this by using linking numbers but the modern way is to use the long
exact sequence of the Hopf fibration sequence S' — S3 — 2.

Hopf: 73(S?) is isomorphic to the additive group of integers 7.

Computation enters the modern era with the work of Serre [116, 118] on the
low dimensional homotopy groups of spheres . To this end, he introduced
a localization technique which he called “classes of abelian groups.” A first
application was:

Serre: If n>1 and p is an odd prime, then the group manio,—2(S*"T1)
contains a summand isomorphic to Z/pZ.

Second, there are results which relate the homotopy groups of some spaces
to those of others.

Examples are product decomposition theorems such as the result of Serre
which expresses the odd primary components of the homotopy groups of



2 Introduction to unstable homotopy theory

an even-dimensional sphere in terms of those of odd-dimensional spheres,
that is:

Serre: Localized away from 2, there is a homotopy equivalence
Qs2n ~ SQn—l x QS4n_1.

Localization is necessary for some results but not for all. A product
decomposition which requires no localization is the Hilton—Milnor theo-
rem [54, 89, 134] which expresses the homotopy groups of a bouquet of
two suspension spaces 7 (XX V YY) in terms of the homotopy groups of
the constituents of the bouquet ¥ X, ¥Y, and of the homotopy groups of
various smash products:

Hilton—Milnor: There is a homotopy equivalence
QEX VIY) ~ 08X x Q5(\/ XV AY).
j=0
Third, Serre used his localization technique to study global properties of

the homotopy groups of various spaces. What is meant by this is best made
clear by giving various examples:

Serre: For a simply connected complex with finitely many cells in each
dimension, the homotopy groups are finitely generated.

Serre: Odd dimensional spheres have only one nonfinite homotopy group,
SQn—i—l =7
7T2n+1( ) .

Serre: Simply connected finite complexes with nonzero reduced homology
have infinitely many nonzero homotopy groups.

Serre [117] proved the last result by using the cohomology of Eilenberg—
MacLane spaces. There is now a modern proof which uses Dror-Farjoun
localization and Miller’s Sullivan conjecture [83, 84].

The study of the global properties of homotopy groups was continued by
James [66, 67] who introduced what are called the James—Hopf invariant
maps. Using fibration sequences associated to these, James proved the fol-
lowing upper bound on the exponent of the 2-primary components of the
homotopy groups of spheres:

James: 4" annihilates the 2-primary component of the homotopy groups
of the sphere S?"+1,

James’ result is a consequence of a more geometric result which was first
formulated as a theorem about loop spaces by John Moore. For a homotopy
associative H-space X and a positive integer k, let k: X — X denote the

k-th power map defined by k(z) = x*.
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James: Localized at 2, there is a factorization of the 4-th power map

4: Q357 5 Q8% 5 QPG

Toda [130, 131] defined new “secondary” Hopf invariants and used these to
extend James’ result to odd primes p, that is:

Toda: For an odd prime p, p?™ annihilates the p-primary component of the

homotopy groups of the sphere S?"*1.
Or in Moore’s reformulation:

Toda: Localized at an odd prime p, there is a factorization of the p*-d
power map

p2 . 9352n+1 N Qs2n71 N Q3S2’I’L+1.

No progress was made in the exponents of the primary components of
homotopy groups until Selick’s thesis [112].

Selick: For p an odd prime, p annihilates the p-primary component of the
homotopy groups of S3.

Selick’s result is a consequence of the following geometric result. Let S3(3)
denote the 3-connected cover of the 3-sphere S3 and let S?*1{p} denote
the homotopy theoretic fibre of the degree p map p : S2+! — §2r+1

Selick: Localized at an odd prime p, Q(S3(3)) is a retract of Q2S?PT1{p}.

Selick’s work was followed almost immediately by the work of Cohen—
Moore—Neisendorfer [27, 26]. They proved that, if p is a prime greater than
3, then p™ annihilates the p-primary component of the homotopy groups of
S§2n+1 A little later, Neisendorfer [100] overcame technical difficulties and
extended this result to all odd primes.

Cohen—Moore—Neisendorfer: Localized at an odd prime there is a fac-
torization of the p-th power map

P QQSZn+1 N Sanl N 9252n+1.
Let C(n) be the homotopy theoretic fibre of the double suspension map
22 . S2n71 N 9252n+1.

Exponent corollary: If p is an odd prime, then p annihilates the p pri-
mary components of the homotopy groups m.(C'(n)) and p™ annihilates the
p primary components of the homotopy groups m,(S*"*1).

For odd primes, Brayton Gray [46] showed that the results of Selick and
Cohen—Moore—Neisendorfer are the best possible. At the prime 2, the result
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of James is not the best possible but the definitive bound has not yet been
found.

The main point of this book is to present the proof of the result of Cohen—
Moore—Neisendorfer. We present the necessary techniques from homotopy
theory, graded Lie algebras, and homological algebra. To this end, we need
to develop homotopy groups with coefficients and the differential homo-
logical algebra associated to fibrations. These are applied to produce loop
space decompositions which yield the above theorems.

It is useful to consider two cases of homotopy groups with coefficients, the
case where the coefficients are a finitely generated abelian group and the
case where the coefficients are a subgroup of the additive group of the
rational numbers.

For a space X and finitely generated abelian group G, 7,(X; G) is defined
as the set of pointed homotopy classes of maps [P"(G), X]. from a space
P"(G) to X where P"(G) is a space with exactly one nonzero reduced
cohomology group isomorphic to G in dimension n. This definition first
occurs in the thesis of Peterson [104, 99]. These homotopy groups with
coefficients are related to the classical homotopy groups by a universal
coefficient sequence.

Peterson: There is a short exact sequence

0= 1 (X)®G = m,(X;G) — Tork(m, 1(X),G) — 0.

There is a Hurewicz homomorphism to homology with coefficients
¢ (X;G) = Hp(X;G),

the image of which lies in the primitive elements, and a Hurewicz theorem
is true.

From this point of view, the usual or classical homotopy groups are those
with coefficients Z.

In the finitely generated case, nothing is lost by considering only the case
of cyclic coefficients. If 2-torsion is avoided, Samelson products were intro-
duced into these groups for a homotopy associative H-space X in the thesis
of Neisendorfer [99]:

[, ] 70X Z/RZ) @ T (X Z/KZ) — T (X Z/KZ).

To construct these Samelson products, it is necessary to produce decom-
positions of smash products into bouquets:

PYZ/p"Z) N P™(Z[p"Z) ~ P*"*™(Z/p"Z) v P**" Y (Z/p" L)
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when p is an odd prime. If p =2, these decompositions do not always
exist and therefore there is no theory of Samelson products in homotopy
groups with coefficients Z/2Z. If p = 3, the decompositions exist but the
decompositions are not “associative” and this leads to the failure of the
Jacobi identity for Samelson products in homotopy with Z/3Z coefficients.

The Hurewicz homomorphism carries these Samelson products into graded
commutators in the Pontrjagin ring,

dla, ] = [pa, ¢f] = (¢a)(¢8) — (=1)""(65) ()

where n = deg(«) and m = deg().

Neisendorfer also introduced a homotopy Bockstein spectral sequence to
study the order of torsion elements in the classical homotopy groups.

With few exceptions, the first applications of homotopy groups with coef-
ficients will be to the simple situation where the the Hurewicz homomor-
phism is an isomorphism through a range. In a few cases, we will need to
consider situations where the Hurewicz map is merely an epimorphism but
with a kernel consisting only of Whitehead products in a range. This is
all we will need to develop the theory of Samelson products in homotopy
groups with coefficients, where we avoid the prime 2 and sometimes the
prime 3.

For a space X and a subgroup G of the rationals, 7, (X;G) is defined as
the tensor product 7,(X) ® G. where , if n =1, we require m,(X) to be
abelian. Once again, these homotopy groups with coefficients are related to
the classical homotopy groups by a universal coefficient sequence, there is
a Hurewicz homomorphism to homology with coefficients, and a Hurewicz
theorem is true. Futhermore, there are Samelson products for a homotopy
associative H-space X and the Hurewicz map carries these Samelson prod-
ucts into graded commutators in the Pontrjagin ring.

In the special case of rational coefficients @), the Hurewicz homomorphism
satisfies a strong result of Milnor—-Moore [90]:

Milnor—Moore: If X is a connected homotopy associative H-space, then
the Hurewicz map ¢ : m.(X; Q) — H.(X;Q) is an isomorphism onto the
primitives of the Pontrjagin ring and there is an isomorphism

H(X;Q) =2 U(m(X;Q))

where UL denotes the universal enveloping algebra of a Lie algebra L.
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In practice this means that the rational homotopy groups can often be com-
pletely determined and this is one of things that makes rational homotopy
groups useful.

In contrast, homotopy groups with cyclic coefficients have not been much
used since they are usually as difficult to completely determine as the usual
homotopy groups are. Nonetheless, some applications exist. The Hurewicz
map still transforms the Samelson product into graded commutators of
primitive elements in the Pontrjagin ring. This representation is far from
faithful but is still nontrivial. The homotopy Bockstein spectral sequence
combines with the above to give information on the order of torsion homo-
topy elements related to Samelson products.

Many theorems in homotopy theory depend on the computation of homol-
ogy. For example, in order to prove that two spaces X and Y are homotopy
equivalent, one constructs a map f: X — Y and checks that the induced
map in homology is an isomorphism. If X and Y are simply connected and
the isomorphism is in homology with integral coefficients, then the map f
is a homotopy equivalence. In general, when the isomorphism is in homol-
ogy with coefficients, then the map f is some sort of local equivalence. For
example, with rational coefficients, we get rational equivalences, with coef-
ficients integers Z,) localized at a prime p, we get equivalences localized at
p, and with Z/pZ coeffients, we get equivalences of completions at p. The
theorem of Serre, Q52" ~ §27~1 x Q54" Jocalized away from 2, and the
Hilton—Milnor theorem,

QEXVIY)~QEX x Q8 | \/ XY AY |,
j=0

are proved in this way. A central theme of this book will be such decom-
positions of loop spaces.

For us, the most basic homological computation is the homology of the
loops on the suspension of a connected space:

Bott—Samelson [13]: If X is connected and the reduced homology of

H.(X; R) is free over a coefficient ring R, then there is an isomorphism of
algebras

T(H.(X;R)) » H.(QXX; R)

where T(V') denotes the tensor algebra generated by a module V.

Let L(V) be the free graded Lie algebra generated by V. The observation
that T(V') is isomorphic to the universal enveloping algebra UL(V') has
topological consequences based on the following simple fact:
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Tensor decomposition: If 0 — Ly — Lo — L3 — 0 is a short exact
sequence of graded Lie algebras which are free as R modules, then there
18 an isomorphism

UL, 2UL; @ ULs.

Suppose we want to construct a homotopy equivalence of H-spaces X x
Y — Z and suppose that we compute

H.(X;R)=ULy, H.(Y;R)=ULs, and H,(Z;R) = UL,.

Suppose also that we can construct maps g: X — Z and h: Y — Z such
that the product f = po(gx h): X xY — Z x Z — Z induces a homol-
ogy isomorphism (where u:Z x Z — Z is the multiplication of Z). Then
we have an equivalence localized in the sense that is appropriate to the
coeflicients.

Here is an example. Let L(x,,) denote the free graded Lie algebra generated
by the set {4 }). Let (z,) denote the abelianization, that is, the free module
generated by the set with all Lie brackets zero. If we localize away from 2
and x is an odd degree element, then we have a short exact sequence

0— ([z,z]) = L(z) = () = 0
and isomorphisms
H. Q8™ 1) 2 U(([z,2])), H(S*1) 2 U((2)),
H.(Q8*) = U(L(z))).
This leads to the result of Serre: Q52" ~ §?n~1 x Q841 Jocalized away
from 2. Thus, Serre’s result is essentially a consequence of just the Bott—

Samelson theorem and the tensor decomposition of universal enveloping
algebras.

Consider the following additional facts concerning Lie algebras [27]:

Free subalgebras: If L is a free graded Lie algebra and K is a subalgebra
which is a split summand as an R-module, then K is a free graded Lie
algebra.

Kernel theorem: If K is the kernel of the natural map L(V @ W) — L(V)
of free graded Lie algebras, then K is isomorphic to the free graded Lie
algebra

o0
L{Pview
j=0

where VI =V @V ®---®V, with j factors.
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A direct consequence is the Hilton—Milnor theorem,

QX VEY) ~ 05X x Q% [ \/ XY AY .
j=0

In order to study torsion at a prime p, it is useful to consider the Bockstein
differentials in homology with mod p coefficients. This leads to considera-
tion of differential graded Lie algebras.

For example, let P"(p") = S™" ! U, " be the space obtained by attach-
ing an n-cell to an n — l-sphere by a map of degree p". Then
H.(P™(p");Z/pZ) = {u,v) with deg(v) = n and deg(u) = n — 1. The r-th
Bockstein differential is given by 8"(v) = u, 8"(u) = 0. Thus, the Bott—
Samelson theorem gives isomorphisms of differential Hopf algebras

H.(QXP™(p"); Z/pZ) 2 T(u,v) 2 UL(u,v)

where L = L(u,v) is a differential Lie algebra which is a free Lie algebra.
Any algebraic constructions with topological implications must be compat-
ible with these Bockstein differentials. For example, the abelianization of
L is (u,v).

This is compatible with differentials, leads to the short exact sequence of
differential Lie algebras

0—[L, L] = L — {u,v) =0,
and the tensor decomposition of universal enveloping algebras

H(QXP"(p"); Z/pZ) = UL = U((u, v)) ® U([L, L]).

But this tensor decomposition can only be realized by a product decompo-
sition of QX P™(p") when p and n are odd. If we set n — 1 = 2m, then we
can prove [27]:

Cohen—Moore—Neisendorfer: If p is an odd prime and m > 1, then
there is a homotopy equivalence

QP2m+2(pr) ~ S2m+1{pr} % Q) \/ P2m+2mj+1(pr)
3=0

where S+ p"} is the homotopy theoretic fibre of the degree p™ map p" :
S2m+1 N S2m+1.

The restriction to odd primes in the above is the result of the nonexistence
of a suitable theory of Samelson products in homotopy groups with 2-
primary coefficients.
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One reason for the above parity restriction is as follows: Suppose the coef-
ficient ring is Z/pZ with p an odd prime. Only when n is odd (so that u
has even dimension and v has odd dimension) can we write that

[L, L] = L(ad’ (u)([v, v], ad’ (w)([u, v])) 20 =

the free Lie algebra on infinitely many generators with r-th Bockstein dif-
ferential given by A7 (ad? (u)([v,v])) = 2ad? (u)([u,v] for j > 0. In this case,
the module of generators of [L, L] is acylic with respect to the Bockstein
differential and it is possible that the universal enveloping algebra U([L,L])
represents the homology of the loop space on a bouquet of Moore spaces.
In fact, the isomorphisms of differential algebras

H (S*™ p" Vi Z/pZ) = U((u,v)),

H.(Q (O/szﬁmj“(p’) s 2/pZ) = U([L, L),
J=0

H.(QP?*™2(p"); Z/pZ) = UL

then lead to the above product decomposition for QP?™+2(pr).

There is no analogous product decomposition for QP?™*1(p"). The situ-
ation is much more complicated because of the fact that [L, L] does not
have an acyclic module of generators when L = L(u,v) with deg(u) odd
and deg(v) even. To go further we need to study the homology H (L, 5").

Let  be an even degree element in a differential graded Lie algebra over
the ring Z/pZ with p an odd prime, let d denote the differential, and for
k > 1 define new elements

Ti(z) = ad?" (z)(dx)

ou@) = 3 307Gt = Dlad ™! (@)(d), ad?" I ) o)

Jj=1

where (a,b) = % is the binomial coefficient. These elements are cycles,

d(ti(x)) = 0,d(ok(z)) = 0, and they determine the homology of the above
L via the following proposition.

Homology of free Lie algebras with acyclic generators: Let L(V') be
a free graded Lie algebra over the ring Z/pZ with p an odd prime and with
a differential d such that d(V) CV and H(V,d) = 0. Write

L(V)=H(L(V),d)® K
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where K is acyclic. If K has a basis xq,dTq,ys,dys with deg(z,) even
and deg(yg) odd, then H(L(V),d) has a basis represented by the cycles
T (Ta), ok (Te) with k > 1.

This proposition has two main applications. The first application is to a
decomposition theorem which leads to the determination of the odd pri-
mary exponents of the homotopy groups of spheres.

Decomposition theorem: Let p be an odd prime and let F*"+1{p"} be
the homotopy theoretic fibre of the natural map P*"T1(p") — S?"+1 which
pinches the bottom 2n-cell to a point. Localized at p, there is a homotopy
equivalence

QF2n+1{pr} ~ S2n—1 % H S2pkn_1{pT+1} « QZ\/P”"‘ (pr)
k=1 o
where

\/ P (p")

«
18 an infinite bouquet of mod p" Moore spaces.

The second application is to the existence of higher order torsion in the
homotopy groups of odd primary Moore spaces:

Higher order torsion: If p is an odd prime and n > 1, then for all k > 1
the homotopy groups ﬂgpkn_l(P2n+1) contain a summand isomorphic to

Z/pT+IZ,
The following decomposition theorem is valid:

Cohen—Moore—Neisendorfer: If p is an odd prime and m > 1, then
there is a homotopy equivalence

QP2m+1(pr) ~ T2m+1{pr} % O \/ pPne (pr)
where there is a fibration sequence
o0
C(TL) % H SZpknfl{pr+1} N T2m+1{pr} - S2n+1{pr}.
k=1

A corollary of these decomposition theorems is [28]:

Cohen—Moore—Neisendorfer: If p is an odd prime and n > 3, then
p?" 1 annihilates the homotopy groups m.(P"™(p")).

In fact the best possible result is [102]:
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Neisendorfer: If p is an odd prime and n > 3, then p"t! annihilates the
homotopy groups m.(P™(p")).



1 Homotopy groups with coefficients

In this chapter, we define homotopy groups with coefficients 7.(X; G) for
a pointed space X and an abelian group G. With some small restrictions,
these homotopy groups are covariant functors of X and G and, most impor-
tant, satisfy a universal coefficient exact sequence

0= 1 (X)®G = 1, (X;G) = Tor’(m, 1(X),G) = 0.

First, m,(X; G) is defined when G is a finitely generated abelian group and
then the definition is extended to arbitrary abelian G by using the fact that
G is a direct limit of its finitely generated subgroups.

The guiding principle is that the groups m.(X; G) are related to the groups
7m(X) in much the same way that the groups H,(X;G) are related to the
groups H,(X;Z).

The definitions originated in the thesis of Frank Peterson [104] written
under the direction of Norman Steenrod. Further development occurred in
the thesis of the author [99] written under the direction of John Moore.
Moore also influenced Peterson.

These homotopy groups with coefficients satisfy the usual long exact
sequences associated to pairs and to fibration sequences. They also sat-
isfy long exact Bockstein sequences associated to short exact sequences of
coefficient groups.

In the case when G = Z/kZ is a cyclic group, we define a mod k Hurewicz
homomorphism ¢ : 7,(X; G) — H.(X; G) and prove a mod k Hurewicz iso-
morphism theorem. The proof of the mod & Hurewicz theorem is a conse-
quence of the fact that it is true when X is an Eilenberg-MacLane space
and of the fact that any space X has a Postnikov system.

We use the usual argument to show that the mod k Hurewicz isomorphism
theorem for spaces implies a similar mod k isomorphism theorem for pairs
of spaces.

12
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1.1 Basic definitions
In order to relate integral homology and integral cohomology, it is conve-
nient to introduce the following two distinct notions of duality.

Definition 1.1.1.

(A) If F is a finitely generated torsion free abelian group, let F* =
Hom(F,Z).

(B) If T is a finite abelian group, let T* = Hom(T, Q/Z).

Thus, Z* = Z generated by the identity map 1z : Z — Z and (Z/kZ)* =
7/ k7 generated by the map which sends 1 to 1/k. It follows that there are
unnatural isomorphisms F* = F and T* = T.

The following lemma is easily verified in the cyclic case and hence in all
cases.

Lemma 1.1.2. For finitely generated free F' and finite T, the natural maps
F — (F*)* and T — (T*)* are isomorphisms.

Corollary 1.1.3. For finitely generated generated free Iy and Fy and finite
Ty and Ty, the natural maps

Hom(F}, F») — Hom(Fy, FY)
and
Hom(T3,Ty) — Hom(Ty, Ty)
sending a homomorphism f to its dual f* are isomorphisms.

Since @ is a divisible, therefore injective, abelian group, the long exact
sequence associated to the short exact sequence 0 -+ Z — Q — Q/Z — 0
gives:

Lemma 1.1.4. For finite abelian T, there is a natural isomorphism T* =2
Ext(T,Z).

Let G be a finitely generated abelian group and let P"™(G) be a finite
complex with exactly one nonzero reduced integral cohomology group,

G fork=n

7k n . _
H(P(G)Z) = {o for k # n.

The universal coefficient theorem
0 — Ext(H,(X;Z2),G) - H"(X;G) - Hom(H,(X;Z),Z) — 0

combines with the above lemmas to yield:
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Proposition 1.1.5. If G=T & F where T is finite abelian and F is
finitely generated free abelian, then the reduced integral homology of P"(Q)
18

™ ifk=n-—1,

Hyp(P"(G);Z) =< F* ifk=n, and

0 ifk#n,n—1.
We will leave the question of the uniqueness of the homotopy type of P*(G)
to the exercises.

Let M,,(G) denote the Moore space with exactly one nonzero reduced inte-
gral homology group in dimension n. It follows that there is a homology
equivalence

M, (F*)V M, (T*) = P(T @ F).

Definition 1.1.6. If X is a pointed topological space, then the n-th homo-
topy group of X with G coefficients is

™™ (X; G) = [P™(G); X].
= the pointed homotopy classes of maps from P"(G) to X.
The two most useful examples of P"(G) are:

If G=7Z= the additive group of integers, then P"(Z)=S" and
T (X;Z) = 7,(X) = the usual homotopy groups for all n > 1.

If G =7/kZ = the integers mod k, then P"(Z/kZ)= P"(k) = S" 1 U
e" = the space obtained by attaching an n-cell to an (n — 1)-sphere by a
map of degree k. Thus, 7, (X;Z/kZ) is defined for all n > 2.

Since P"(G @ H) ~ P*(G)V P"(H), it follows that =7, (X;G® H) =
T (X; G) ® 7, (X; H). Hence, the cyclic case is sufficient to define 7, (X; G)
for any finitely generated abelian group G and all n > 2 or, if G is finitely
generated free abelian, n > 1.

But we can also construct P"(G) by free resolutions. Let G be any finitely
generated abelian group which is free if n = 1. Since the case n = 1 is trivial
(PY(G) is just a wedge of circles), we shall assume n > 2. Let

0—)@25@2—)6’—)0
B a

be a finitely generated free resolution and let

f\/sm =\ st
a 8
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be a map such that the induced map f*=F: Py Z — P, Z in dimension
n — 1 integral cohomology. If C'y = the mapping cone of f, the long exact
cohomology sequence associated to the cofibration sequence

\/sm L\ st s oy
o 8

shows that Cy is a P"(G).

If Y is any homotopy associative co-H-space and X is any pointed space, the
comultiplication v : Y — Y VY defines a group structure on [Y, X],. The
standard example of a homotopy associative co-H-space is a suspension,
YW = S' AW, and the double suspension X2W is homotopy commutative.
Since L P (G) = P"(G):

Proposition 1.1.7. The set m,(X; G) is a group if n > 3 and an abelian
group if n > 4.

On the other hand, if Y is any pointed space and X is any homotopy asso-
ciative H-space, the multiplication p: X x X — X defines a group struc-
ture on [Y, X],. The standard lemma is:

Proposition 1.1.8. If Y is any co-H-space and X is any H-space, then
the two structures on [Y, X|. are the same and they are both commutative
and associative.

Thus:

Proposition 1.1.9. If X is an associative H-space, the set m,(X;G) is a
group if n > 2 and an abelian group if n > 3.

Exercises

(1) Let G be a finitely generated abelian group and write G = T @ F where
T is a torsion group and F is torsion free. Let X be any finite complex
with exactly one nonzero reduced integral cohomology group which
is isomorphic to G in dimension n. Thus, if n =1, G = F must be
torsion free, T = 0. Assume X has an abelian fundamental group. Show
that there exists an integral homology equivalence AV B — X where
A is a Moore space with exactly one nonzero reduced homology group
isomorphic to T" in dimension n — 1 and B is a Moore space with exactly
one nonzero reduced homology group isomorphic to F' in dimension n,
that is, B is a bouquet of spheres. Thus, if X is simply connected, it
is unique up to homotopy type.

(2) (a) By considering the universal cover and the action of the funda-
mental group, show that mo(S!V S?) is isomorphic to the group
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(3) ()

ring Z[r] where 7 = (T) = {I,T*',T*2,...} = the infinite cyclic
group generated by T'.

Constructing a fake circle: Let o« = (I — 2T e ma(S* vV S?) and
let

X =(8'vSHu, e

be the result obtained by attaching a 3-cell to the bouquet by the
map «. Show that X has the same integral homology as the circle

ST but that mo(X) = Z[1].

Let P%(Z/kZ) be the standard example given above. Show that the
universal cover of P%(Z/kZ) has the homotopy type of a bouquet
of k — 1 copies of S? and hence that

ks

72(P3(Z/kZ)) = T Z =
1

.
Il

a direct sum of k — 1 copies of Z.

Show that
mo(P2(Z/kZ)) vV §%) = ma(P*(Z/K7)) & Z[n]

where 7 = (T) = {I,T,T?,..., T 1} = is the cyclic group gener-
ated by a generator T' of order k.

Constructing a fake Moore space: Let o= (-
2T) & ma(P?(Z/KZ)) v S?) and let

X = (PXZ/kZ) v §%) U, €

be the result obtained by attaching a 3-cell to the bouquet by the
map «. Show that X has the same integral homology as the Moore
space P?(Z/kZ) but that

mo(X) = m(P*(Z/kZ)) ® Z./(2F — 1)Z.

1.2 Long exact sequences of pairs and fibrations

Let C'Y denote the cone on a space Y. Suppose (X, A) is a pointed pair
and G is an abelian group such that P"~1(G) exists. Define

(X, 4 G) = [(CP"H(G), P"7H(G)), (X, A)]..

This is clearly a functor on pairs.
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In general, 7, (X, A; G) is a set for n > 3 and, if n > 4, the comultiplication
(CP" @), P HG) = (CP"1(G)vCP" (G), P HG) v P 1@))

makes 7, (X, A; G) a group.

Of course, m, (X, *; G) = mp (X; G).

The restriction map 0 :m,(X,A) = m,—1(A) fits into the long exact
sequence of a pair:

o (AG) = ma(X5G) = ma(X, A G) 5 m3(A4;G) —
m3(X; G) = m3(X, 4;G) N m2(A; G) = m(X;G).

Let F — E — B be a fibration sequence. The homotopy lifting property
yields:

Lemma 1.2.1. The projection induces an isomorphism

m(E, F;G) =Y T (B; G).

The long exact sequence of the pair (E, F') becomes the long exact homo-
topy sequence of a fibration:

...m(F; G) = m4(E; G) = m4(B; G) 9, m3(F; G) —
m3(E; G) — 73(B; G) 9, m(F;G) — ma(E; G) — ma(B; G).

The extension of the long exact sequence to mo(B;G) is an elementary
consequence of the homotopy lifting property.

If F is a topological group and F LELBisa principal bundle with
action F' X F — E, then for all n > 2 there is an action 7,(F;G) x
T (E; G) = mn(E; G), ([R], [f]) = [h] % [f]. We have m.([f]) = m.([g]) for
[f] and [g] in 7, (E;G) if and only if there exists [h] in m,(F;G) such
that [h] * [f] = [g].

Exercises
(1) Show that the long exact homotopy sequence of a fibration terminates
in an epimorphism at m2(B; G) if F' is simply connected.

(2) Suppose that F — E — B is a fibration sequence of H-spaces and H-
maps with 7 (E) — 71(B) and m2(E) @ G — m2(B) ® G both epimor-
phisms. Show that the long exact homotopy sequence with coefficients
can be extended to terminate in the exact sequence

= m(BG) - m(F) @G = m(E)@G = m(B)®@G — 0.
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1.3 Universal coefficient exact sequences

Suppose n > 2. Since P"(Z/kZ) is the mapping cone of the degree k map
k:S" 1 — 871 the resulting cofibration sequence

st g1 B przrzy B oon K ogn
yields for every pointed space X a long exact sequence
o T (X) B (X)L (X2 D m (X)) B (X)L

Of course, the map k : S™ — S™ induces multiplication by k on the abelian
homotopy group 7,(X) (or the k-th power on the fundamental group
71(X)). The map p is called a mod k reduction map and the map S is
called a Bockstein.

The above exact sequence is always an exact sequence of sets and an exact
sequence of groups and homomorphisms except possibly at

m2(X) 2 mo(X; Z/KZ) D 71 (X)

when 7o (X;Z/kZ) is not a group. Of course, if X is a homotopy associa-
tive H-space it is always an exact sequence of groups and homomorphisms.
In the general case, we have a substitute which is adequate for many pur-
poses: The natural pinch map P?(Z/kZ) — P?(Z/kZ) v S? yields an action
o (X) X mo(X; Z/KZ) — wo( X Z/KZ), (hy f) — h* f. I f, gema(X;Z/KZ),
then B(f) = B(g) if and only if there exists hema(X) such that h* f = g.

If n > 2, there are short exact sequences

0— l;;((f()) — T (X5 Z/KkZ) — kernel{k : 7, _1(X) — m,—1(X)} = 0.

Since

Tn (X>
kmn(X)

kernel{k : 7, 1(X) = 7, 1(X)} = Tor?(m,_1(X), Z/kZ),

~ 1. (X) ® Z/kZ,

we can write the universal coefficient sequence in the form in which it
generalizes.

Universal coefficient exact sequence 1.3.1. For a pointed space X and
n > 2 there is a natural exact sequence

0= m(X) ® Z/kZ — 7,(X;Z/kZ) — Tor”(m,_1(X),Z/kZ) — 0.
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If X is connected and the fundamental group is abelian, this suggests a
cons- istent way to extend the definition of homotopy groups with coeffi-
cients to dimension 1. Set

Wl(X;Z/k}Z) = 7T1(X) ®Z/k‘Z

Suppose X is a nilpotent space with abelian fundamental group. It is a
fundamental result of localization theory that the following are equivalent:

(a) m,(X;Z) is a Z[] module for all 1 < n < oo.

(b) H,(X;Z) is a Z[+] module for all 1 < n < co.

1

k

The universal coefficient theorem for homotopy and homology imply that
these are also equivalent to:

(¢) mn(X;Z/KkZ) =0 for all 1 < n < oo.
(d) H,(X;Z/kZ) =0 for all 1 < n < oo.

Exercises

(1) Let G be a finitely generated abelian group and n > 2. Use the defini-
tion of P"™(G) by free resolutions to show that there is a short exact
universal coefficient sequence

0= 1 (X)®G = m,(X;G) = Torl(m, 1(X),G) = 0.
(If n = 2, assume 71 (X) is abelian.)
(2) Let p be a prime.
(a) Suppose there is a positive integer r such that
P (X Z/p°Z) =0 for all s <r.

If aeTor”(m,_1(X),Z/p"2) has order p® with s < r, then there is
an element ~yem,,(X;Z/p"Z) which has order p® and such that ~y
maps to « in the universal coefficient sequence

0= (X)QRZ/p"Z — 7 (X;Z/p"Z)
— Tor’(m,, 1(X),Z/p"Z) — 0.
(b) If m,,—1(X) is finitely generated,together with the hypotheses in

(a), show that the above universal coefficient sequence for Z/p"Z
coefficients is split.
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1.4 Functor properties
The definition by free resolutions leads immediately to the following propo-
sition:

Proposition 1.4.1. If f : G — H is a homomorphism of finitely generated
abelian groups and n > 2, then there exists a map F : P"(H) — P"(QG)
such that the induced cohomology map F* = f. We shall sometimes write
F = f~

Unfortunately, the homotopy class of the map F' is not uniquely determined
in all cases. But we do have:

Proposition 1.4.2. The natural map 6 : [P"(H), P"(G)]. = Hom(G, H)
given by O(F) = F* is a bijection in the following cases:

(a) if H and G are finitely generated free abelian and n > 2.

(b) iof H if finite abelian and G is finitely generated free abelian and
n > 2.

(c) if H if finitely generated free abelian, and G is finite abelian, G has
odd order, and n > 4.

(d) if H and G are finite abelian, G has odd order, and n > 4.
Proof: The preceding proposition says that 6 is always a surjection.
Suppose that H = ®H, and G = ®Gg. Then

[P"(H), P"(G)]. = &[P"(Ha), P"(Gp)).
in all of the above cases since:

(1) P™(H) = VP"(H,) implies

[P"(H), PY(G)]. = &[P"(Ha), P"(G)).
and

(2) P"(G) = VP"(Gg), dimension P"(H,) = n, and the fact that the
pair ([[ P*(Gg), VP™(Gp)) is 2n — 1 connected in cases (a) and (b),
2n — 3 connected in cases (c) and (d), implies

[P"(Ha), P"(G)]. = @[P"(Ha), P (Gp)]
Therefore it suffices to consider the cyclic cases:

(a) [S™, 8™, =Hom(Z,Z) =7, n > 2, which is a classical result
true even for n = 1.
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(b) [P™(Z/kZ),S")« = Hom(Z,Z/kZ) = Z/kZ, n > 2 which is an

immediate consequence of the universal coefficient theorem.
(¢) [S™, P™"(Z/kZ)). = Hom(Z/kZ,Z) = 0, k odd and n > 4: to see
this, it is sufficient to observe that there is a fibration sequence

F — PY(Z/kZ) — K(Z/kZ,n — 1)

with F' {¢-connected, ¢ = min(2n —4,n+ 2p — 5), where p is
the smallest prime dividing k. Since dimension S™ =n </,
[S™, P"(Z/kZ))« = [S™, K(Z/kZ,n — 1)]. = 0.

(d) [P™(Z/¢Z), P™(Z/KZ)]. = Hom(Z/kZ,7/¢Z), k odd and n >
4: Let F,G: P"(Z/{Z) — P"(Z/kZ) be two maps. The first
obstruction to homotopy of F' and G is in

H"™ (P (Z(2); 7 P (Z/KE)) = Hom((Z/4E)", (Z/KZ)")
= Hom(Z/kZ,7./¢Z).

The obstruction is just 6(F)—60(G) = F* — G*. All higher
obstructions vanish by part (c). ]

Corollary 1.4.3. If H is a finite group of odd exponent k and n > 4, then
[P"(H),X]. = m,(X; H) has exponent k for all spaces X .

Proof: Apply part (d) of the above to the identity map of P™(H). Then
use naturality. O

Corollary 1.44. If 0> H —- G — G/H — 0 is a short exact sequence
of finitely generated abelian groups and n > 2, then there is a cofibration
sequence P"(G/H) — P"(G) — P™(H).

Proof: Let f: P"(G/H) — P™(G) be a map which induces the projection
G — H in integral cohomology. The mapping cone Cy is then a P"(H).O

The maps in the above corollary are not always unique up to homotopy.
But the space P™(H) is unique up to homotopy type in case n > 3. In the
next section we will restrict to a short exact sequence of cyclic groups

0—Z/NZ 5 7/ktZ 2 7)KZ — 0
and produce a more specific construction of this cofibration sequence.

1.5 The Bockstein long exact sequence

Given any continuous map f:A — B, it is homotopy equivalent to a
cofibration f: A — Z; where Z; = the mapping cylinder B Uy (A x I)
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obtained by identifying (a,1) = f(a). The map f is the inclusion, f(a) =
(f(a),0). This leads to:

Lemma 1.5.1. Any homotopy commutative diagram

A —- X
4 {
Y — Z

1s homotopy equivalent to a strictly commutative diagram

A — X1
1 1
Yl — Zl

where all the maps are cofibrations and it embeds in a commutative diagram

A — X1 — Xl/A

4 \ \
Y1 — Zl — Zl/Yi
4 4 \

Yl/A — Zl/Xl — Zl/XlLJAYi

where all the rows and columns are cofibration sequences. In addition, note
that

A — Xl

+ 1
Yi - Xiual;

s a pushout diagram and there is a cofibration sequence
Xiua YT =71 — Zl/Xl Ua Y.

Proof: First replace A — X and A — Y by cofibrations A — X; and A —
Y;. Then use the homotopy extension property of the cofibration A — X3
to make the diagram strictly commutative. The inclusions X; — X7 U4 Y}
and Y7 — X7 Ua Y7 are cofibrations. Replace the map X; Ua Y1 — Z by a
cofibration X7 Uy Y7 — Z4.

The rest follows by collapsing subspaces. O
For example, the homotopy commutative diagram
Snfl l> Snfl

Lk 1 ke

Snfl £> Snfl
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yields the homotopy commutative diagram below in which all rows and
columns are cofibration sequences

st L gl * — sn —
Lk Lkl \: 1k
gt L gl puz7) - sn —
$ + 1 i
p n B

PY(Z/kZ) 5 PY(ZJk(Z) = PMZ/(Z) S P YZ/KZ) — .

The bottom row extends to a long sequence of cofibrations called the geo-
metric Bockstein sequence

P (z/kz) S P2z k) S P2z )0z) B
PYZ/KZ) & PY(Z/kZ) D PP(Z/0T) — - .

Mapping this sequence to a space X yields the long exact homotopy Bock-
stein sequence

To(X; Z/kZ) & mo( X Z/KEZ) & 7o (X ZJ0T)

L rs(XZ/KT) & 75(X Z)R0T) 4 703(X; ZJ0T) - - .
Remark. The homotopy commutative diagram of cofibration sequences is
a good way to see the effect of p,7n, and 8 on integral chains. For example,

P"(Z/kZ) has a basis of integral chains: 1 in dimension 0, s,,_; in dimension
n — 1, e, in dimension n. If we look at

Sn—l i> Sn—l
Ik .7
Snfl £> Snfl
) 1
P

PY(Z/kZ) 5 PY(Z/k(Z)

we see immediately that B*(sn,l) =/ls,_1, B*(en) = e,,. Similarly, it is not
hard to verify the commutative diagram

Snfl ﬁ) Snfl
L ke Lo
Snfl i> Snfl
\ \
PYZ/KZ) = PY(Z/0Z)

and thus Q*(sn,l) = Sn_1, ﬂ*(en) = ke,
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It is clear that g*(en) = Sn,ﬁ*(sn—l) =0.

Warning. If k£ = /¢, consider the null composition 7 o p. In the defining cofi-
bration sequence, it looks like the map k : P*(Z/kZ) — P™(Z/kZ) which
is k times the identity, but, unless k is odd, it might not be. For example,
the map 2 : P"(Z/2Z) — P™(Z/27Z) is not null homotopic.

Exercises

(1) If X is a simply connected space, show that the long exact homotopy
Bockstein sequence terminates in a sequence of groups and homomor-
phisms ending in an epimorphism

0« mo(X;Z/kZ) & mo(X; 2 KIZ) <&

mo(X3 ZJT) & n3(X3ZJKT) - .

(2) If X is a homotopy associative H-space, show that the long exact homo-
topy Bockstein sequence may be extended to a long exact sequence of
groups and homomorphisms

0 m(X)RZ/KZ & m(X) QLKL & 7 (X) @ Z/IL
Ly (X; 2K & 7o(X; 2/ K0T <L

12X ZJZ) L 1y(X3Z)KT) = -

1.6 Nonfinitely generated coefficient groups

If n > 2 we can attempt to extend the definition of m,(X;G) to the case
where G is an abelian group which is not finitely generated. Any such G can
be written as a direct limit G = lim_, H,, of finitely generated subgroups
H,. Any inclusion map H, — Hp can be “realized” by a map P"(Hp) EN
P"(H,) which induces ¢ in integral cohomology. These maps may not be
unique up to homotopy. In Section 1.4 we gave some conditions which
guarantee uniqueness of these maps up to homotopy. On the other hand, it
may be the case that G is a sequential limit of finitely generated subgroups
and we may just make a choice of the realization of one stage into the next.
We then realize the compositions to be consistent with these choices and the
question of uniqueness vanishes. In any case, we get maps m,(X; H,) —
mn(X; Hg) and as long as we have sufficient uniqueness we can take the
direct limit and we define 7, (X; G) = lim_, m,(X; H,). Since direct limits
commute with tensor and torsion products and since direct limits preserve
exact sequences, we still have the universal coefficient exact sequence

0= T (X)®G = m(X;G) = Tor’(m,_1(X),G) — 0.
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For example, the rationals @) are the sequential direct limit of the subgroups
%Z. That is, @ is the direct limit of the two isomorphic sequences

Z C %Z C 5Z C ... C HZ C...
L1 12 13! LK
z %z 3 z 4% .05 z =

Thus

70(X £ Q) = limm, (X:2) = limm, (X) @ (kl'z> — (X)) ® Q.

Similarly, if p is a prime, then Z[1/p] is the sequential direct limit of (1/p*)Z
and

(X5 Z[1/p]) = mn(X) @ Z[1/p].

We can also consider @Q/Z to be the sequential direct limit of the two
isomorphic sequences

22 ¢ oz o ¥ . c ®H c..
1 1 \ S
Z/2Z c Z/3Z c z/4Z c ... C Z/KZ cC...

Thus,
T (X;Q/Z) = lim m,(X;Z/K\Z).
—

Finally, if p is a prime, recall that Z(p>) = Z[1/p]/Z is the sequential direct
limit of Z/pZ C Z/p*Z C Z/p3Z C ... and thus

(X5 Z(p™)) = lim 7, (X Z/p"Z).

Exercises

(1) Let p*G={x € G:Vr >0,3y € G such that p"y = z} and let ,=»G =
{z € G : Ir > 0 such that p"z =0} = the p-torsion subgroup of G.
Show that

GRZL(p™)=G/p G,  Tor’(G,Z(p™)) =p~ G.
and
(Z/p"Z) ® ZL(p™) = Z/p"Z,  Tor™(Z/p"Z,Z(p™)) = L/p"Z,
(Z/qZ) @ Z(p>) =0,  Tor™(Z/qZ,Z(p>)) =0

if ¢ and p are relatively prime.
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(2) Show that

GO LlL/p] = {OZ;f]gl;g/:p ZZ/qZ with ¢ and p relatively prime.
(3) Let X be a simply connected CW complex with
(X5 Z[1/p]) =0, m (X5 Z(p™)) =0
for all n > 2. Show that X is contractible.
(4) Suppose X is a simply connected space. Show that
T (X;Q/Z) =0 for all n > 2
if and only if 7, (X) is a rational vector space for all n > 2.
(5) Suppose X is a simply connected space. Show that
T (X;Q) =0 for all n > 2

if and only if 7, (X) is a torsion group for all n > 2.

1.7 The mod k£ Hurewicz homomorphism

The reduced homology of P™(Z/kZ) is:

(Z/kZ)e, if £ =n,
Ho(P"(ZJKZ); Z/KZ) = { (Z)kZ)s, 1 if £ =mn—1,
0 ifl#n,n—1,
where e, and s,,_1 denote generators of respective dimensions n and n — 1.

Definition 1.7.1. For n > 2 the mod k& Hurewicz homomorphism is the
map

oo (X;2/k2) — H,(X;Z/K7)

defined by ¢(a) = fi(en) where a = [f] : P*(Z/kZ) — X. Clearly, ¢ is a
natural transformation.

Lemma 1.7.2. Ifn > 3, the Hurewicz map @ is a homomorphism.
Proof: Given maps f: P"(Z/kZ) — X and g: P"(Z/kZ) — X, the sum
[f] + [g] is represented by the composition

PY(Z/kZ) % P™(Z/kZ) v P™(Z/kZ) L% X
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where v is the comultiplication and f V g is f on the first summand and is
g on the second summand. Therefore,

o([f1+[g]) = (fV g)s ovi(en) = (f V g)ilen, €r)

= filen) +gu(en) = o([f) +¢(lg). O
Lemma 1.7.3. Suppose X is a homotopy associative H-space. Then the
Hurewicz map ¢ : wo(X;Z/kZ) — Ho(X;Z/kZ) is a homomorphism if k is
odd or if X is simply connected.
Proof: Consider the diagonal map A : P*(Z/kZ)— P*(Z/kZ) x

P?(Z/KZ). Write Ai(ez) =e2 @1+ As1 @81 +1®Rep. If p: X x X - X
is the multiplication of X and [f], [g]lem2(X : Z/kZ), then

P([f1+ 1g]) = pe o (fi ® gs) 0 Au(e) = fi(e2) + g«(e2) + A(fs(s51) - gu(s1))

= o([fD) + #(lg]) + A(fu(s1) - g4(51))-
If X is simply connected the last term is 0. Otherwise, consider the
twist map T : P?(Z/kZ) x P*(Z/kZ) — P*(Z/kZ) x P*(Z/KZ), T(z,y) =
(y,x). Since T o A = A, it follows that A = —\, or 2\ = 0. If k is odd, then
A=0. ]

Remark. Since P?(Z/27) is just the two-dimensional projective space,
the well known computation of the mod 2 cup product shows that

A=1 and o([f] +[g]) = #([f]) + ¢ ([g]) + fu(s1) - g«(s1) in the case: ¢
mo(X;2/27) — Hy(X;Z/27Z) with X a homotopy associative H-space.

The Hurewicz map is compatible with the universal coefficient sequences,
the Bockstein sequences, and the action of mo(X) on mo(X; X/kZ). In other
words, the following are commutative for n > 2:

(X)L Xz D (X)) B mli(X)

Lo Lo Lo Lo
T (GZKZ) L w2z L mn(XGZ/KZ) D mn(XGZ/KZ)

Lo Lo Lo Lo

Hoo(X:2/kZ) 2 HL.(X2/02) 5 H.(X;Z/K6Z) 5 Ho(X;2/kZ)

mo(X) x m(X;Z/kZ)  EPC (X 7R
Lexgp Lo
, (c.d)p(c)+d ,
Ho(X) x Ho(X;Z/kz) SO g (x.z/kz).

The mod k£ Hurewicz homomorphism ¢ for pairs is defined similarly. The
homology H,(CP" Y (Z/kZ), P" Y(Z/kZ);Z/kZ) is a free Z/kZ module
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with generators e, and s,_1 of respective dimensions n and n — 1. Given
[f]in 7, (X, A; Z/kZ), define o([f]) = f«(en). The maps ¢ are again natural
transformations and

T (XGZ/kZ2) — wn (X, Z/KZ) (X, A; Z/KZ) i mn-1(A;Z/kZ)
Lo Lo Lo Lo
Ho(X;Z/kZ)  —  Ho(X, % Z/kZ) Ho(X, A 2/kZ) 2 Ho (A Z/KZ)
commute.

Thus, if F — E — B is a fibration sequence, the following commutes:

(B, % ZKZ) & T (B, F:Z/kZ) > 1, (F;Z/KZ)
Lo Lo Lo
Ho(B,%Z/kZ) <+ H.(E,F;Z/k7) 2 H, \(F;Z/kZ).

Exercises

(1) Check that the diagrams in this section commute.

(2) If X is a homotopy associative H-space, check that the Hurewicz map
is compatible with the extensions of the long exact Bockstein sequences
to dimension 1.

(8) If n>2 show that ¢ : m,(X;Z/kZ) — H,(X;Z/kZ) is an isomor-
phism if ¢ ®1:7,(X)®Z/kZ — H,(X)®Z/kZ and Tor”(p,1):
Tor%(m,,1(X),Z/kZ) — Tor?(H,(X),Z/kZ) are isomorphisms. (The
only point of this exercise is to check it when n = 2 and m2(X;Z/kZ)
may not be a group.)

1.8 The mod k Hurewicz isomorphism theorem

Recall that a connected pointed space X is called nilpotent if the funda-
mental group 71 (X) acts nilpotently on all the homotopy groups 7, (X)
for n > 1. In particular, the fundamental group must be nilpotent. In the
next theorem, 71 (X) will be abelian and 71 (X;Z/kZ) is understood to be

Mod k Hurewicz theorem 1.8.1. Let X be a nilpotent space with abelian
fundamental group and let n > 1. Suppose 7;(X;Z/kZ) =0 for all 1 <
i <n—1. Then the mod k Hurewicz homomorphism ¢ : m;(X;Z/kZ) —
H(X;Z/KZ) is:

(

(

(

a) an isomorphism for all 1 <1i < n.
b) an epimorphism fori=n+1 ifn > 2.

c) an isomorphism for i =n+1 and an epimorphism for i = n+ 2 if
n >3 and k is odd.
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Proof: The strategy of this proof is as follows:

(1) First, for all n > 1, show that it is true for Eilenberg-MacLane
spaces.

(2) Second, for all n > 1, show that it is true for a general space by
considering its Postnikov system.
Part (1) The mod k Hurewicz theorem for Eilenberg—MacLane spaces: For
an integer k and an abelian group A, we shall write Ay = A ® Z/kZ and
wA = Tor”(A,Z/k7Z). First of all, note that the universal coefficient theo-
rem implies:

Lemma 1.8.2.
Ak ZfZ =n,
mi(K(A,n);Z/kZ) =2 ¢ LA ifi=n-+1,
0 otherwise.

If p is a prime, the following computation due to Cartan [22] expresses the
homology of a K(A, 1) in terms of exterior algebras F(V,r) generated in
odd degree r and divided power algebras I'(W, s) generated in even degree
s. In the cyclic case it is an immediate consequence of the collapse of the
the homology Serre spectral sequence of the fibration S* — K(Z/nZ,1) —
CP>*. The Kinneth theorem extends it to all finitely generated abelian
groups. The general result then follows from direct limits, but something
is missing, namely, a construction of divided powers in the homology of
K(A,1). This can be found in the 1956 Cartan Seminar [22] or in the book
of Brown [21].

Cartan 1.8.3. For all abelian groups A, there is an isomorphism
H.(K(A1);Z/pZ) = E(A,,1) @T(,A,2).

We first observe that the Hurewicz theorem is true for K(A4,1) with mod
p coefficients.

In dimension n = 1, the mod p Hurewicz map ¢ is an isomorphism for
K(A,1). Hence, the mod p Hurewicz theorem is true for K(A,1) and n = 1.

On the other hand, if m (K(A,1);Z/pZ) = A, =0, then the mod p
Hurewicz map ¢ is an isomorphism in dimensions 1 and 2 and an epi-
morphism in dimension 3. Hence, the mod p Hurewicz theorem is true for

K(A,1) and n = 2.

If m(K(A,1);Z/pZ) = mo(K(A,1);Z/pZ) = 0, then 7 (K(A,1);Z/pZ) =
H(K(A,1);Z/pZ) = 0 for all k > 1. We conclude that ¢ is an isomorphism
in all dimensions. The mod p Hurewicz theorem is true for K(A,1) and all
n>1.
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Lemma 1.8.4. Ifp is a prime, then

A, if =2,
A 7 {=3,
HU(K(A,2):2,/p7) = | ” ;o=
Io(4p) if (=4
0 if Ap=0and (=5.

Lemma 1.8.5. Ifp is a prime and m > 3, then

A, if L=m,

pA if L=m+1,

0 if £=m+2 and p is odd.
0 if Ap=0and {=m+3.

Hy(K(A,m);Z/pZ) =

The above lemmas are a small piece of the complete computation due to
Cartan. They are an elementary consequence of Cartan’s calculation of the
homology of a K(A,1). One uses the path space fibration K(A,m — 1) —
PK(A,n) - K(A,m) and the fact that the Serre spectral sequence is a
spectral sequence of algebras.

Anyway, the above lemmas assert that the mod p Hurewicz theorem is true
for K(A,1) and all n > 1.

Now, let k be any integer. Since Hy (K (A,1); Z/kZ) = m (K(A,1); Z/kZ) =
Ay, the mod p version implies that the mod k Hurewicz theorem is true for
K(A,1) and n = 1.

Suppose that 71 (K(A,1);Z/kZ) = 0. The long exact Bockstein sequence
shows that 71 (K(A,1);Z/dZ) =0 for any integer d dividing k. Since k
can be factored into primes and the modular Hurewicz theorem is true for
primes, K(A,1), and n = 2, we can use induction on the number of factors
of k, the strong form of the five lemma, and long exact Bockstein sequences
to show that, for any integer k, the mod k Hurewicz theorem is true for
K(A,1) and n =2:

Similarly, if n >3 and if 7 (K(A,1);Z/kZ) =0 for all 1<{<n-—1,
then my(K(A,1);Z/dZ) =0 for all d dividing k& and ¢=1,2. Thus,
mo(K(A,1);Z/pZ) = He(K(A,1);Z/pZ) =0 for all primes p dividing k
and all £ > 1. As before, induction on the number of factors of k, the
strong form of the five lemma, and long exact Bockstein sequences show
that (K (A, 1);Z/kZ) = Hy(K(A,1);Z/kZ) = 0 for all £ > 1. The mod k
Hurewicz theorem is true for K(A4,1) and all n > 1.

Induction on the number of factors of £ combines with the strong form of

the five lemma and long exact Bockstein sequences to show that the mod
k Hurewicz theorem is true for K(A,1) and all n > 1.
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Finally, the path fibration K(A,m —1) — PK(A,m) — K(A,m) and the
Serre spectral sequence show that the mod k Hurewicz theorem is true for
K(A,m) for all m > 1 and all n > 1.

Part (2) The mod k Hurewicz theorem via Postnikov systems: Let A be an
abelian group on which a group 7 acts. In other words, A is a module over
the group ring Z[r]. Let ¢ : Z[r] — Z be the augmentation epimorphism
defined by e(g) =1 for all g in . If I =kernel(¢) = the augmentation
ideal, then 7 acts trivially on A if and only if I - A = 0. The action is called
nilpotent if I - A = 0 for some power I" of the augmentation ideal.

We shall say that A is mod k trivial if Ay =0 and A = 0.

Lemma 1.8.6. Let 0 > A— B — C — 0 be a short exact sequence of
abelian groups. Then:

(a) By =0 implies Cy, = 0.

(b) if two of the three groups are mod k trivial, then so is the third.
Lemma 1.8.7.

(a) Ap =0 implies (I - A), =0 for allmn > 1.

(b) xA =0 implies (I - A) =0 for alln > 1.
The first of the two lemmas follows from the long exact sequence of the Tor
functor. For the second, it is sufficient to consider the case n = 1. Assume

Ay = 0. Note that k(I - A)=(I-kA)=1-A=0. Thus (- A)x =0, and,
if ,A =0, then k(IA) Cr A=0.

In particular, if Ay, = 0 then (I"™- A/I"*t!. A), =0 for all n > 1, and, if A
is mod k trivial, then (I™ - A/I"™1 . A) is mod k trivial for all n > 1.
Recall that a space X is called nilpotent if X is path connected, the funda-
mental group 71 (X) is nilpotent, and the action of w1 (X) is nilpotent on
mm (X) for all m > 2. In this case, each homotopy group 7, = 7, (X) has
a decreasing filtration

Tm = Fl(ﬂ—m) ) F2(7Tm) D) F3(7Tm) ) F4(7Tm) 2D

with each Fy(m,,)/Fri1(my) having a trivial m(X) action and with
each decreasing sequence terminating in a finite number of steps,
F,, +1(mm (X)) = 0. This leads to a sequence of principal bundles, a refine-
ment of the Postnikov system,

K(Ff(ﬂ-m)/F[-H(ﬂ-m)a m) - Em,é — Em,é—l
withn > 1 and 1 < /¢ < a,,. It begins with

El,O = % and Em70 = Em_ly(JMn—I
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for m > 2.
We have

ms(X) fil<s<m-1

Ts(Em,e) = T (X)/Fop1(mm (X)) ifs=m

0 if s > m.

Furthermore,
X = lim E,
m—0o0

and this inverse limit is “finite in each degree.”

Now, suppose that X satisfies the hypotheses of the mod k& Hurewicz the-
orem for some n > 1, that is, X is nilpotent with abelian fundamental
group and 7;(X;Z/kZ) = 0 for all 0 < ¢ < n — 1. Then we know that all the
Eilenberg—MacLane spaces K (Fy(my,)/Fo41(mm), m) which appear above
also satisfy the hypotheses of the mod k Hurewicz theorem for this n > 1.

In order to perform the inductive step to prove the mod k& Hurewicz theo-
rem, we need to recall the Serre long exact homology sequence of a fibration.
Suppose that F' — E — B is an orientable fibration sequence of connected
spaces with

H{(F)=H;B)=0for1<i<n-—1

for some coefficient ring R.

The E? term of the homology Serre spectral sequence is

EZ, = Hy(B; Hy(F)) :

The first nonzero differentials are:

d" ' : H,(B;Hy(F)) — Hap 1 (F)
and the transgressions
T = dn+‘j+1 : Hn+j+1(B) — Hn+J(F)

with 0 < j <n—2.
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It follows that we have the Serre long exact homology sequence

Hgnfl(F) — Hznfl(E) — Hgnfl(B) L)
HQH_Q(F) — Hgn_g(E) — HQn_Q(B) l)

Hn+2(F) — Hn+2(E) — Hn+2(B) o
Hn+1(F) — Hn+1(E) — Hn+1(B) l)
H,(F)— H,(E) — H,(B) — 0.

Suppose now that the coefficients are Z/kZ. Since the transgression is
defined by

o
T Hn+j+1(Bv*) — Hn+j+1(E7F) — Hn+j(F)7

it follows that the transgression is compatible with the connecting homo-
morphism of the long exact homotopy sequence of the fibration:

Tosjir(BiZ/KZ) S moy i (FiZ/KZ)
Lo Lo
Hpyji1(BsZ/KLZ) = Hiyj(F;Z/KZ)

commutes.
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Now the strong form of the five lemma applies to show that if the mod k
Hurewicz theorem is true for the fibre and base of the fibration sequence

K(Fy(mm)/Fo1(Tm),m) = Em g = Em g

then it is true for the total space. This completes the inductive step in the
proof.

Hence the mod k Hurewicz theorem is true for all the Postnikov stages
Ep¢. Since X = limy,—,o0 B¢ is an inverse limit which is finite in each
degree, it follows that the mod k& Hurewicz theorem is true for all X.

Exercise

(1) Suppose k and ¢ are positive integers. Suppose either that X is
simply connected or that X is a connected H-space. Show that
¢ :m;(X;Z/kZ) — Hj(X;Z/kZ) is an isomorphism for all 1 < j < ¢
and an epimorphism for j = /¢ if and only if the same is true for
o :m(X;Z/K"Z) — H;(X;Z/k"Z) where r is a fixed positive integer.
(Hint: Use induction on r, the universal coefficient sequences and the
general five lemma.)

1.9 The mod k Hurewicz isomorphism theorem for pairs

If (X, A) is a pair of spaces with w2 (X, A) abelian, then the mod k& homo-
topy group ma(X, A;Z/k7Z) is defined to be ma(X, A) ® Z/kZ. The classi-
cal Hurewicz map induces a mod k Hurewicz map ¢ : mo(X, A;Z/kZ) —
Hy(X, A;Z/kZ). For example, if A is simply connected, then mo(X, A) is
abelian and this definition is valid. With these conventions, we assert:

Mod %k Hurewicz theorem 