Existence of localization

Joseph A. Neisendorfer

January 21, 2009

Abstract

This is an expository paper on the existence of the localization or nullification of abelian groups. We show that there exists a nullification functor for any fixed abelian group M. The proof is a variation of a proof due to Gustavo Granja.

1 Definitions

The localization theory or nullification theory of abelian groups is the consequence of a fixed abelian group M being declared to be locally equivalent to zero.

An abelian group X is M-**null or** $0 \rightarrow M$ **local** if

$$0 = Ext^*(M, X), \quad * = 0, 1,$$

that is, $0 = hom(M, X) = Ext^{1}(M, X)$.

A homomorphism $f : A \to B$ of abelian groups is a **local equivalence** if, for all local X,

$$f^*: hom(B, X) \to hom(A, X)$$

is a bijection.

A homomorphism $\iota : X \to L_M X = LX$ is localization if 1) ι is a local equivalence.

2) LX is local.

Standard arguments show:

a) If localization exists, then any homomorphism $f : X \to Y$ into a local R-module Y has a unique extension to a map $g : LX \to Y$, that is, $g \cdot \iota = f$.

b) If it exists, localization is a functor and unique up to natural isomorphism.

2 Preliminaries on mapping cones and chain homotopy classes of maps

Let $f : A \to B$ be any chain map of complexes. The mapping cone $C_f = B \oplus sA$ is the chain complex with differential \overline{d} given by

$$\overline{d}b = db \quad b \in B$$

 $\overline{d}(sa) = -s(da) + fa, \quad a \in A$

Let

 $A \xrightarrow{f} B \xrightarrow{\iota} C_f \xrightarrow{j} sA$

be the natural sequence of maps of chain complexes. It is clear that

Lemma: There is a chain homotopy $\iota \circ f \simeq_D 0 : A \to C_f$ given by

$$Da = sa, \quad a \in A.$$

Let *Y* be any chain complex and let [A, Y] denote chain homotopy classes of maps from *A* to *Y*. Then:

Lemma: If $g : B \to Y$ is a chain map, then $g \circ f$ is chain homotopic to zero, that is, $g \circ f \simeq_D 0$ if and only if g extends to a chain map $G : C_f \to Y$.

In the above lemma, the correspondence between D and the extension G is given by

$$G(sa) = D(a), \quad a \in A.$$

Lemma: If $g : C_f \to Y$ is a chain map, then there is a chain homotopy $g \circ \iota \simeq_D 0 : B \to Y$ if and only if there exists a chain map $G : sA \to Y$ such that there is a chain homotopy $G \circ j \simeq_E g : C_f \to Y$.

Given the homotopy D in the above lemma, we define a chain map \overline{g} : $C_f \to Y$ by

 $\overline{g}b = gb, \quad b \in B, \quad \overline{g}(sa) = D(fa), \quad a \in A.$

Then $g - \overline{g} = G \circ j$ for a chain map $G : sA \to Y$ and $\overline{g} \simeq_F 0$ via the chain homotopy

$$Fb = Db, \quad b \in B, \quad F(sa) = 0, \quad a \in A.$$

The implication in the other direction is obvious.

Hence,

Corollary: The sequence of chain homotopy classes of maps is exact:

$$[A,Y] \xleftarrow{f^*} [B,Y] \xleftarrow{\iota^*} [C_f,Y] \xleftarrow{j^*} [sA,Y].$$

3 Localization exists

Suppose that an abelian group *M* has a free resolution:

$$0 \to P_1 \xrightarrow{d_1} P_0 \xrightarrow{\epsilon} M \to 0.$$

Then, if *X* is any other abelian group,

$$0 \leftarrow Ext(M, X) \leftarrow hom(P_1, X) \leftarrow hom(P_0, X) \leftarrow hom(M, X) \leftarrow 0$$

is exact.

Hence, if we regard M and X as complexes concentrated in degree 0, there is an isomorphism

$$hom(M, X) \xrightarrow{\simeq} hom(P_*, X) = [P_*, X]$$

where $hom(P_*, X)$ is the module of degree 0 chain maps and $[P_*, X]$ is the module of chain homotopy classes of chain maps.

If we denote by $s^{-1}P_*$ the desuspension of the complex P_* , then there is an epimorphism

$$hom(s^{-1}P_*, X) \to Ext^1(M, X)$$

and a resulting isomorphism

$$[s^{-1}P_*, X] \xrightarrow{\simeq} Ext^1(M, X)$$

where $[s^{-1}P_*, X]$ is the group of chain homotopy classes of chain maps.

Given an abelian group X, we define an abelian group X_H by requiring

$$\bigoplus_{f} M \xrightarrow{F} X \to X_H \to 0$$

to be exact where *F* is the sum of all the homomorphisms $f : M \to X$. It is clear that the map

$$hom(M, X) \to hom(M, X_H)$$

is zero and that $X \to X_H$ is a local equivalence.

Given an abelian group Y we define a positively graded complex Y_E by taking the mapping cone of the map of complexes

$$\bigoplus_{g} s^{-1} P_* \xrightarrow{G} Y$$

where G is the sum of all maps of complexes

$$g: s^{-1}P_* \to Y.$$

Thus,

$$Y_E = Y \oplus \bigoplus_g P_*$$

with differential \overline{d} :

 $\overline{d}y = 0$, $\overline{d}p_0 = 0$, $\overline{d}p_1 = gs^{-1}p_1 - dp_1$, $\overline{d}p_n = -dp_n, n > 1$.

We have a sequence of complexes

$$\bigoplus_{g} s^{-1} P_* \xrightarrow{G} Y \to Y_E \to \bigoplus_{g} P_*.$$

It is clear that the map

$$Ext^{1}(M,Y) = [s^{-1}P_{*},Y] \to [s^{-1}P_{*},Y_{E}]$$

is zero.

From the above sequence of complexes, we get for any abelian group Z, the exact sequence of chain homotopy classes of maps

$$[\bigoplus_{g} s^{-1}P_*, Z] \leftarrow [Y, Z] \leftarrow [Y_E, Z] \leftarrow [\bigoplus_{g} P_*, Z].$$

In particular, if Z is local, then

$$hom(Y,Z) \leftarrow hom(Y_E,Z) \leftarrow 0$$

is an isomorphism.

Given a positively graded complex *W*, we have a map of complexes

$$W \to H_0 W$$

where $H_0W = W_0/d_1(W_1)$ is the homology in dimension zero. The map

$$hom(W,Z) \xleftarrow{\simeq} hom(H_0W,Z)$$

is an isomorphism for all abelian groups Z.

Finally, for any abelian group X, we define the abelian group

$$X_+ = H_0((X_H)_E)$$

so that we have homomorphisms

$$X \xrightarrow{\iota_1} X_H \xrightarrow{\iota_2} (X_H)_E \xrightarrow{\iota_3} H_0((X_H)_E) = X_+.$$

and we know that:

1)

 $X \to X_+$

is a local equivalence.

2)

$$Ext^*(M, X) \to Ext^*(M, X_+)$$

is zero for * = 0, 1.

We now construct the localization LX by transfinite recursion.

First of all, let *C* be an infinite cardinal which is greater than or equal to the cardinality of a generating set of *M*. Then $C \cdot C = C$ implies that *C* is greater than or equal to the cardinality of the free resolution $P_* \rightarrow M$.

We record the fact that $C \cdot C = C$ implies that:

Proposition: If Γ is the first ordinal or cardinality greater than C and \mathcal{B} is a set of cardinality less than C consisting of ordinals less than Γ , then

$$\sup \mathcal{B} = \bigcup_{\beta \in \mathcal{B}} \beta < \Gamma.$$

Remark: If $C = \aleph_0$ is the cardinality of the integers, then $\Gamma = \Omega$ the first uncountable ordinal and the above proposition says that Ω is not a sequential limit of countable ordinals.

Let α be an ordinal and set

That is, the localization sits at the end of the process

$$X = X_0 \to X_1 \to X_2 \to \dots \to X_\omega \to X_{\omega+1} \to \dots$$
$$\to X_\alpha \to \dots \to \lim_{\alpha < \Gamma} X_\alpha = X_\Gamma = LX.$$

We claim that $\iota : X \to LX$ is localization. We need to check that ι is a local equivalence and that LX is local.

1) For all local Y,

$$hom(X_{\Omega}, Y) = hom(\lim X_{\alpha}, Y) = \lim_{\leftarrow} hom(X_{\alpha}, Y) \simeq hom(X, Y)$$

since an inverse limit of isomorphisms is an isomorphism. Thus, ι is a local equivalence.

2) Let P_* is a free resolution of M with the cardinality of the resolution less than or equal to C.

Let $f: s^i P_* \to X_{\Gamma}$ be any map of chain complexes with *i* equal to 0 or -1. For all elements $x \in P_*$, there exists an ordinal

$$\alpha(x) < \Gamma$$

such that $f(s^ix)\in X_{\alpha(x)}$ and thus f factors as

$$s^i P_* \to \bigcup_{x \in P_*} X_{\alpha(x)} = \lim_{\to} X_{\alpha(x)} = X_{\lim \alpha(x)} = X_{\beta}.$$

Since Γ is not a limit of lesser ordinals indexed by a set of cardinality less than or equal to C, it follows that $\beta < \Gamma$ and that $\beta + 1 < \Gamma$. Hence

$$s^i P_* \to X_\beta \to X_{\beta+1} \to X_\Gamma$$

induces zero on chain homotopy classes of maps. Thus, $LX = L_M X = X_{\Gamma}$ is M-null or local.