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Abstract

Patient registration, a technique to ensure dose conformity, is an essential part of tomographic radiotherapy. A new six
parameter (three translational and three angular) algorithm to implement this technique has been developed. The method
is stable, accurate, and most importantly uses sinogram data as input, obviating image reconstruction. A sinogram, an
array of Radon transforms, is derived directly from the raw data, which are photon transmission fluences from either
a diagnostic or a megavoltage X-ray source. The algorithm uses properties of the Radon and Fourier transforms, such as
the central slice theorem and Fourier shift theorem, to decouple translational and angular offsets. The theoretical
underpinnings of this algorithm are presented here, whereas numerical verification using synthetic and experimental data
is presented elsewhere. © 1999 Published by Elsevier Science B.V. All rights reserved.

PACS: 87.53.Tf; 87.53.-J; 87.56.-v
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1. Introduction

Cancer therapy embodies a variety of techniques
to treat diseased regions of the body, for example,
surgery, chemotherapy, and radiotherapy. In this
paper we discuss the theoretical underpinnings of
a relatively new radiation delivery technique refer-
red to as tomotherapy. This method, as in tradi-
tional radiotherapy, delivers a tumoricidal dose of

* Corresponding author. Tel: + 1 608 263 9529; e-mail:
fitchard@madrad.radiology.wisc.edu.

radiation to the diseased area over a series of daily
treatments called fractions. However, in the case of
tomotherapy, the intensity of the treatment beam is
dynamically modulated while it traverses a helical
path about the patient. This type of treatment, on
the one hand, permits highly conformal delivery
patterns, but on the other hand, it demands high
spatial precision (errors on the order of + 2 mm as
opposed to + 5 mm standard radiotherapy). The
greater precision is important in sparing sensitive
and normal tissues. A problem with any frac-
tionated delivery system is verifying the patient
position and correcting for offsets prior to each
treatment. The offsets may be linear translations
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along all three coordinate axes and/or rotations
about these three axes called, in aeronautical ter-
minology, pitch, yaw, and roll. This angular termi-
nology is used in lieu of the more standard Euler
angles for two reasons: (1) the mechanical arrange-
ment of the treatment table is such that only rota-
tions about the coordinate axes are possible, and
(2) the oncologists are accustomed to thinking in
terms of pitch, yaw, and roll. In terms of Euler
angles, («, f, ) as defined by Rose [1], we have the
relations

Opitch - ( - 7[/2’ opilch, 0)!
Byaw - (Oyoyaw’ 0)7

eroll - (01'0"! 0’ 0) (1)

The importance of algorithm efficiency is close to
that of delivery precision, because the algorithm is
used while the patient is lying on the couch await-
ing treatment. For patient comfort and delivery
reliability, it is desirable to minimize this time. To
this end, the algorithm takes as input an initial or
“gold standard” sinogram and one obtained just
prior to treatment. This avoids the time consuming
operation of image reconstruction. This paper con-
centrates on the theoretical basis of the algorithm;
numerical verification can be found in other publi-
cations [2-4]. '

Fig. 1. Tomotherapy treatment machine. The patient is positioned on the table’s conveyor belt prior to treatment. The source is
rotated while the patient is moved through the treatment plane. A diagram of the megavoltage and diagnostic beams is shown

in Fig. 2.
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2. Computed tomography

The concept of tomotherapy is discussed in
Mackie et al. [5,6]. Fig. 1 is an artist’s conception
of a tomotherapy machine. The main difference
between this and a diagnostic CT unit is the pres-
ence of a megavoltage as well as a diagnostic fan-
beam. The fan-beam labeled with a subscript k (see
Fig. 2) consists of X-rays in the kilovoltage (diag-
nostic) energy range. The other fan-beam consists
of X-rays in the megavoltage (therapy) energy
range. The therapy treatment beam will be dis-
cussed later. Both of the sources are mounted on
a CT-like rotating annular ring gantry from which
radiation can be delivered while the patient is
translated horizontally along the longitudinal axis.
The path of the radiation source in a coordinate
system “fixed” to the patient is helical. The fan-
beams are intercepted by a curved detector, which
measures the photon intensity, I, of a small subarc
of the fan-beam. Each subarc is called a ray and is
treated mathematically as a line. For modern ma-
chines the rays fan out from the “point” source.
However, with older machines parallel rays were

Megavoltage ..
Source .-~ @
e Kilovoltage
<, Source

Detector

Detector

Fig. 2. Diagram of the sources and fan-beams with correspond-
ing labels. The two fan-beams have central rays that are ortho-
gonal and cross at the isocenter of the gantry. The gantry angle,
o, and fan-angle, n, are indicated. All of the quantities are
subscripted with either an m (for megavoltage) or a k (for
kilovoltage).

used. In these machines, the data were collected one
ray at a time as the source moved perpendicular to
the ray direction. Parallel rays are easier to handle
mathematically and, to a good approximation,
fan-beam rays can sometimes be approximated by
parallel rays.

The intensity measured by the detectors is re-
lated to a property of the patient called the linear
attenuation function, u. This is a nonnegative, dif-
ferentiable function in R* of compact support. It is
related to the density of the patient’s tissues
— greater for bone than for soft tissue and essential-
ly zero for air. If the patient is moved a small
distance, Ar, from his or her current position, the
new attenuation function denoted as u’ has values
satisfying the equation

H(r) = plr + Ar) + n(r). )

The function n(r) represents the noise in the data.
Since this is random in nature, the functions u and
w will differ even if the offset Ar = 0. In the devel-
opment of the algorithm, this term is ignored. Its
effects will be manifested in the discrepancy be-
tween the experimental and computed results. The
offset, Ar, can be determined from the maxima in
the “cross-correlation” of the two attenuation func-
tions. The cross-correlation of two real-valued
functions in n-dimensions is defined by

(f@nugXx): = Lf (x +y)g(y)dy, xye R’ﬂ (3)

If g is the same function (ignoring noise) as f trans-
lated by x, so that g(y) = f(xo + y), then (f ®.gXx)
is maximum for x = x,. This follows from the def-
inition of the L* norm of a function and the
Schwartz inequality. For an arbitrary function, g,
this may not be the only maximum. However, in
tomotherapy the offset, x,, is assumed to be small
relative to the distance from the nearest local max-
imum. To demonstrate this, we have performed
experiments with CT images from the “Visible
Human Project” found on the web at “http:/
www.nlm.nih.gov/research/visible”. These were
processed to reduce the image size from 512 by 512
bytes to 256 by 256 bytes and to reduce the number
of slices by half. Taking images from various parts
of the body, cross-correlation functions have been
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computed for a range of offsets. As expected, the
global maximum at x = 0 is well separated from
local extrema. Minimum distances are on the order
of several centimeters, which is greater than the
assumed initial offset of less than 1 cm. Fig. 3 is
a plot the cross-correlation function for the upper
legs of a human. The lower left-hand corner shows
the image used. This example was chosen because it
exhibits large side peaks. It is clear that none of
the local extrema are near the global maximum.
To emphasize this point, Fig. 4 zooms into a

10 x 10 cm? region centered at the global maximum.
This and similar plots (not shown) verify that as long
as the patient is initially near (within 1 or 2 cm) the
global maximum, the registration method dis-
cussed will give a unique result. Typically, the in-
itial patient position is within 1 cm of the global
maximum. Tests images with 10% and 50% Gaus-
sian random noise were also correlated. These dem-
onstrated that noise has an insignificant influence.

The ratio of the photon intensity at a detector
with the patient removed, I, to the intensity with

Fig. 3. Cross-correlation of 46 x 46 cm? image (lower left) of the upper legs of a human. The two prominent side peaks occur when the
left leg overlaps the right or vice versa. The top contour plot demonstrates that the cross-correlation function has no peaks or valleys

near the global maximum.
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Fig. 4. A zoom of the previous figure into a region 20 x 20 cm? about the global maximum. This emphasizes the conclusion that no local

extrema occur within several cm of the global maximum.

the patient in place, I, is given by

In(Io/IXL) = Lu ds, 4)

where L is the ray path of the photons, and ds is the
one-dimensional Lebesgue measure on L. In the
general case, we have to regard L as a line in R>.
However, for “axial slices” we can regard L as a line
in the plane. An axial slice is obtained by keeping
the patient stationary while the gantry is rotated.

For some purposes axial slices can be used in place
of helical slices and are easier to work with math-
ematically. In this case the right-hand side of
Eq. (4) reduces to a special case of the “Radon
transform.”

The Radon transform, as defined in Ref. [7],
(Appendix A), of a function f on R" is the function
Rf = f on the set of hyperplanes of R" given by

(RF(H) = f(H):= Lf ds, )
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where ds is the Lebesgue measure on H. Thus, when
the ambient space has dimension two, the right-
hand side of Eq. (4) is simply the Radon transform
of the attenuation function, g, for the path, L. For
the Radon transform in R", we can write
H nonuniquely as H = {reR"|a-r=p} with
a a unit vector in R" and pe R'; He(a,p) gives us
a way to assign coordinates to the set of H’s. The
Radon transform can then be written symbolically
as

(RfYe,p):= Lf (ré(p —a-r)dr. (6)

For axial slices, where n = 2, the array of Radon
transforms for each path in the fan-beam, at one
gantry angle, is called a profile. The two-dimen-
sional array of profiles from each gantry angle is
a projection data set, or sinogram. In the above
notation, if L«{a,p), we have

In (Io/I(L) = (Rp)e,p):= flep), aeR?,
lel =1, peR. 7

3. Tomotherapy

Just as in helical CT, helical tomotherapy radi-
ation is delivered with the gantry and couch in
simultaneous motion. While the patient travels
through the gantry in the longitudinal direction,
the rotating megavoltage fan-beam is modulated
by a multileaf collimator (MLC) system. Helical
tomotherapy also has the capability to blur the
delivery between “slices,” effectively eliminating
junction artifacts (hot or cold spots in the high-dose
region). In fact, the delivered dose is simply a single
continuous band of intensity modulated radiation
“custom made” to conform the dose to the target
volume and possibly to “conformally avoid” any
critical structures.

Dose conformity would be improved by allowing
the X-rays to enter the patient from a full 47 ge-
ometry, however, this is precluded by engineering
and practical problems. The human body has much
greater length along the longitudinal direction than
in the axial plane. Therefore, a machine that could
send X-rays along the longitudinal axis would

necessarily be much larger than current designs.
Also, for tumors in the abdominal or thorax region,
longitudinal X-rays traverse a considerable amount
of normal and sensitive tissue. However, a larger
interance solid angle can be obtained by dynam-
ically tilting the gantry during the treatment. Ex-
cept, perhaps in the case of head treatment, this
does not significantly increase dose conformity, and
it presents additional engineering and treatment
planning problems, so it has not been attempted in
the initial design. ’

The efficacy of tomotherapy has been tested ex-
perimentally using a computer-controlled phantom
positioner and a megavoltage X-ray slit beam.
These experiments [8,9] verify that helical beam
treatments can deliver a uniform dose distribution
to the target volume, provided the patient is cor-
rectly positioned.

3.1. Tomographic registration

Registration is a term that refers to the alignment
of one patient image with another in such a way
that they correspond point by point. Clearly, this is
essential for any kind of radiation therapy, parti-
cularly when intensity modulated conformal and
conformal avoidance treatments are being de-
livered. A variety of patient registration methods
exist. External patient marks and laser alignment
lights are currently used to obtain an overall pa-
tient setup in conventional radiotherapy. However,

often skin alignment does not correspond to regis- .= -7

tration of a deep lying tumor, and more accurate
techniques are warranted. To mitigate problems,
a radiographic setup verification algorithm based
on projection data collected prior to treatment has
been developed. In tomotherapy the positioning
requirements are more stringent, so these methods
are supplemented by tomographic registration,
a computer implemented algorithm that reduces
the + 5 mm positioning error of standard registra-
tion to less than + 2 mm. This accuracy is possible
by comparing the current and previously obtained
(where, by assumption, the patient is correctly posi-
tioned) projection sets using cross-correlation.
Prior to the first treatment, a patient would have
a CT scan to obtain a projection set. This scan,
which is a measure of the attenuation function, is
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used to plan the treatment and also as a reference
scan to position the patient before subsequent daily
sessions are delivered. Registration of the patient
position is done by cross-correlating the projection
file acquired before the first treatment commences
with the projection file acquired prior to the current
daily treatment.

The Radon transform of an n-dimensional
cross-correlation (indicated by the symbol, ®,) of
two functions is the 1-dimensional cross-correla-
tion, in the second argument, of the Radon trans-
formed functions. It can be shown from Egs. (3), (5)
and (6) that

fens (ap) =F(0p)®1d(p). ®)

The derivation is essentially the same as that for the
Radon transform of a convolution given in Deans
([73, pp. 72, 95), and Ramm and Katsevich ([10],
pp. 15, 16). Note that the n-dimensional cross-
correlation has been reduced to a set of one-
dimensional cross-correlations labeled by the para-
meter d.

We shall make use of the Fourier transform, %,
which is defined by

(F u)k):= M(k) = J‘ ure®rdr, kreR. (9

R*

(F~ M)r) = %f Mk dr. (10)

...LThe Fourier transform and Radon transform are .

related by the central slice theorem, which, stated
symbolically, is

F,.R =7, (11)

where & ,_,, and & are a one-dimensional Fourier
transform and the central slice of an n-dimensional
Fourier transform, respectively. The proof (10,
p. 15; 7, p. 128) is as follows:

@

yf(ta) = R!(x)ei‘“'x dx = J' eipt

-

X J' f(x)o(p — o x) dx dp = F,_Rf (a,2),
R
(12)

where [ satisfies the Dirichlet conditions.

4. Mathematical solution
4.1. Translational algorithm

The solution of the registration problem is based
on the intuitive idea that the patient is correctly
registered when the two-dimensional cross-correla-
tion of the first and subsequent treatment attenu-
ation functions are maximal. As pointed out in
Section 2, this assumption is reasonable for medi-
cal tomotherapy. We start with this idea and show
later how one can work directly with the projection
sets. The arguments pertaining to Eq. (3) imply that
the maximum condition for the cross-correlation
can be expressed as

%(u@zy’)(s) =0, k=12 s AreR%. (13)
k .

s=Ar

Here, 4’ may include a translation and/or rotation
about some point relative to the simulation posi-
tion. However, for now only translations will be
considered. The quantity s, is the kth component of
the cross-correlation variable, and Ar is the transla-
tion of the patient relative to the simulation posi-
tion. The subscript k labels the x and y directions,
respectively, in any convenient coordinate system.
Typically, x is taken to lie in the horizontal direc-
tion and y in the vertical direction. The objective is
to ascertain the direction and magnitude of the
offsets.

One of the advantages of using a cross-¢orrela~-

tion algorithm is that changes within the patient
(i.e., small organ motion or tumor volume changes)
will not defeat the algorithm. The cross-correlation
array will change somewhat, however, the projec-
tion arrays are dominated by the patient surface
(tissue to air density change) and bony structures
(tissue and bone have a relatively large density
difference). By comparison the movement of soft
tissue organs will make only minor changes in the
projection arrays. The maximum of the correlation
array may be somewhat smaller, but it will occur at

. nearly the same values. This property (i.e., nonsen-

sitivity to systematic or random error) is often
referred to as algorithm stability. In numerical cal-
culations with noisy data, a stable algorithm is
essential.

PRI D I S
[SASN ".Le.».‘—r,.«r.'.
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If 4 and p' are known, Eq. (13) can be used
directly. However, to compute these functions re-
quires inversion of the Radon transform, which is
a time consuming computation. It is preferable to
work with projection files that are derived directly
from measured data. From the definition of 4’ in
Eq. (2), it follows that

f(o,p) = J\R’y(r + Andé(p — a-r)dr (14)
=j ur)d(p + - Ar —a-rydr (15)

RJ
= fi(e,p + Ap), (16)

where Ap = a- Ar. Thus, applying Egs. (2), (3) and
(16), the cross-correlation in projection space now
becomes

(A®fi'Yep) = Lﬁ(p + q)i(q + Ap)dq (17

< lal ey (18)

By the same arguments as those leading to Eq. (8),
we conclude that

=0. (19)

q=Ap

0
E}(u@m)(a,q)

Here, the symbol ®, stands for the one-dimen-
sional cross-correlation in the second argument,
which significantly decreases computation time
compared to two- or three-dimensional cross-cor-
relation. Note that evaluating s at Ar is equivalent
to evaluating f at p=a-Ar. Eq.(19) is used to
compute the patient linear offset from the measured
data.

So far, we have assumed that y’' is not rotated
relative to g, as is indicated in Eq. (2). Suppose that
(" is rotated, relative to y’, by an angle Ap about
the rotation axis such that

W) = ('), (20)

where /,, is the 2-by-2 rotation matrix for
a counterclockwise rotation of A@. We write
(ot )(r) for the right side of Eq. (20). The Radon
transform has the property ([7], p. 69)

R(slppit'You,p) = ['(lng 0,p). (21)

This follows from the definition of the Radon trans-
form and from the fact that the determinant of
a rotation matrix is one. If we write o« = &y, 'a,
then 4"(a,p) = (o',p) = fi(e’, p + Ap), where Ap =
o' - Ar is the rotation invariant projection of the
linear offset onto the profile. Now Eq. (19) takes the
form

G,
P (A®14")(2q) =0. (22)
q q=

Ap

This expression is used to obtain the offset
magnitude and the offset direction relative to o'
The. arguments leading to Eq. (22) depend on the
assumption that the only maxima in the search
region used for cross-correlation is the global
maxima. With this assumption, verified by indepen-

_dent studies of human CT data, the same informa-

tion is contained in Egs. (13) and (22), however,
registration using Eq. (22) avoids the time consum-
ing computation of image reconstruction, and the
accuracy can be greater if many projections are
used.

4.2. Rotational algorithm

How then can the relative rotation be computed?
To answer this question, we look at the magnitude
of the Fourier transforms of the two attenuation
functions. First, note that if the patient is rotated
about some unknown position ry by an angle § and
then translated by a vector distance Ar the attenu-
ation function y'(r) is given by

W(r) =p(r —ro +ro) =pully '(r —ro) +ro + Ar].
(23)

Although a different result would be obtained if the
patient were first translated, in either case the trans-
formation can be thought of as a rotation of the
patient about the rotation axis followed by the
appropriate translations. This can be illustrated by
rewriting Eq. (23) as

W)= pu( A'r = Ag'ro+mo + Ar) (24)
Rotate Translate
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or

H(r) = ulA7' (=ro + Ar) + 7o + As 'r] (25)
Rotate

Transla.te

Thus, in either case, the relative position of the
patient consists of both a rotation about the isocen-
ter and a translation, where the details of the trans-
lation terms depend on the actual center of rotation
and the magnitude and direction of the translation.
To determine the rotation, consider the two-dimen-
sional Fourier transform of the attenuation func-
tion, Eq. (9) with n =2

M(k) = (FuXk), keR? (26)
for the simulation position, and for the position
prior to subsequent treatments,

M'(k) = (F T s, R)uk), (27)

where 7,,, is the translation operator, Ar, is the
unknown total translation in Eq. (24) or Eq. (25),
and £ is the rotation matrix for rotation about the
z-axis with the angle of rotation suppressed. The
Fourier shift property states that the Fourier trans-
form of a translated function is a complex constant
of unit magnitude times the Fourier transform of
the untranslated function:

(F T an Rt = e* 2 (F R (28)

Thus, if we consider only the magnitude of the
Fourier transforms, the offset and unoffset attenu-
ation functions differ only by a relative rotation:

(F Tar Rl = | (F R)). (29)

A simple calculation shows that the Fourier trans-
form commutes with rotation. Therefore, Eq. (29) is

le™ 4" RM(K) = |ZM (k). (30)

Since the magnitude of the Fourier transform de-
pends only on the relative orientations of the
simulation and pre-treatment attenuation func-
tions, we can write an equation for rotation by

analogy to Eq. (13):

a—i)-(lM@llM'l)(lkl,W) =0. BN €Y
w=A¢
Eq. (31) could be used to find the relative orienta-
tions of the two patient positions. However, as
mentioned before, we wish to work only with pro-
Jection data in order to avoid the computationally
intensive operation of reconstruction. To get back
into projection space, we use the central slice the-
orem and define this Radon transform as &,.,j.
A proof similar to that preceding Eq. (8) can be
constructed to show that

5—— (1F =l ® 1| F iV Nt 0) =0. (32)
()} w=Ap

Using Egs. (13) and (32) along with the measured
tomographic data, one can compute the offset rela-
tive to the initial patient position. Once the relative
offset of the patient is known, one can either phys-
ically move the patient back to the initial position
or the treatment delivery can be adjusted by some
method to correct for the relative offset.

5. Conclusion

In this article several basic ideas from mathemat-
ics and medical physics have been combined to
produce a practical resuit with direct application to
tomotherapy, a new cancer treatment methodo-
logy. The primary mathematical ideas are the Ra-
don transform and its connection with the Fourier
transform through the central slice theorem, as well
as properties of the projection set space and its
Fourier transform. Application of these mathemat-
ical concepts produces the translation and relative
rotations directly from projection sets. The physical
ideas are cross-correlation in real space, which is
the intuitive method of overlaying images to deter-
mine the relative offsets, and the conversion of
tomographic X-ray measurements to the Radon
transform of rays through the patient. The connec-
tion between real space and projection space was
demonstrated with the application of some trans-
form properties. The amalgamation of mathemat-
ical and physical ideas has produced a practical
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registration method which is both accurate (less
than 1 mm error) and, efficient due to computation
directly from projection data.
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