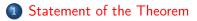
## Primes Which Are a Sum of Two Squares

Scott Kirila

June 25, 2020





- 2 An aside: infinitely many
- 3 Roadmap
- Proof of Step 1
- 5 Proof of Step 2
- 6 Step 1 (again)
- A 'one-line' proof

**Question.** When can a prime number be written as a sum of two positive squared integers?

We begin with some numerical observations:

Let's assume that q is an odd prime, so  $q \equiv 1 \pmod{2}$ .

What about modulo 4?

An odd number is congruent to 1 or 3 modulo 4, so q = 1 + 4N or q = 3 + 4N.

From our list, only odd primes congruent to 1 modulo 4 are a sum of squares. **Coincidence**?

Let's look at squares modulo 4:

$$\begin{array}{ll} 0^2 \equiv 0 \pmod{4} \\ 1^2 \equiv 1 \pmod{4} \\ 2^2 \equiv 0 \pmod{4} \\ 3^2 \equiv 1 \pmod{4}. \end{array}$$

So any sum of two squares,  $m^2 + n^2$ , is

$$m^{2} + n^{2} \equiv \begin{cases} 0^{2} + 0^{2} \pmod{4} \\ 0^{2} + 1^{2} \pmod{4} \\ 1^{2} + 1^{2} \pmod{4} \end{cases} \equiv \begin{cases} 0 \pmod{4} \\ 1 \pmod{4} \\ 2 \pmod{4} \\ \end{cases}$$

If 
$$q = m^2 + n^2$$
, then  $q \equiv 0, 1, 2 \pmod{4}$ .

Since q is prime, it is not divisible by 4.

If 
$$q \equiv 2 \pmod{4}$$
, then q is divisible by 2 (since then  $p = 2 + 4k$ ). Hence  $q = 2$ .

Conclusion? Either  $q = 1^2 + 1^2$ , or  $q \equiv 1 \pmod{4}$ .

So any odd prime which is a sum of two squares must be congruent to 1 (mod 4).

Is the converse true? If q is an odd prime which is congruent to 1 (mod 4), must it be a sum of two squares?

The quick answer is: YES!

#### Theorem<sup>1</sup>

An odd prime number is a sum of two squared integers if and only if it is congruent to  $1 \pmod{4}$ .

But first we need a middle step to help bridge the gap.

<sup>&</sup>lt;sup>1</sup>Attributed to Girard\* (1625), Fermat\* (1640), and Euler (1750)

**Observation.** If  $q = m^2 + n^2$ , then q does not divide n.

Why not? Otherwise q divides  $m^2 = q - n^2$ .

Since q is prime and divides  $m^2 = m \cdot m$ , it actually divides m.

This means that  $q^2$  divides  $m^2 + n^2 = q$ , which is impossible!

So  $n \not\equiv 0 \pmod{q}$ .

In particular, it has a multiplicative inverse<sup>2</sup>,  $n^*$ , modulo q:

 $n \cdot n^* \equiv 1 \pmod{q}$ .

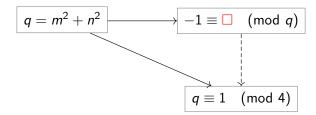
<sup>&</sup>lt;sup>2</sup>Infinity of Primes II, slide 6

Since  $q = m^2 + n^2$ , we have

$$m^2 + n^2 \equiv 0 \pmod{q}$$
  
 $m^2 \equiv -n^2 \pmod{q}$   
 $m^2 \cdot (n^*)^2 \equiv -1 \pmod{q}$   
 $(m \cdot n^*)^2 \equiv -1 \pmod{q},$ 

and so -1 is a square modulo q.

What we know so far:



Regarding that dashed arrow on the previous slide:

■ If -1 is a square modulo q, then there is an integer j with  $j^2 \equiv -1 \pmod{q}$ .

Squaring both sides, we get  $j^4 \equiv 1 \pmod{q}$ .

Alex's rolling pin argument<sup>3</sup> can be used here to show that 4 divides q - 1.

But this is the same as saying  $q \equiv 1 \pmod{4}$ 

<sup>3</sup>Infinity of Primes II, Slide 11. Note that 4 is the size of  $\{1, j, j^2, j^3\}$ 

## An aside: infinitely many

**Fun fact:** using what we know from the previous slide, we can show that there are infinitely many primes<sup>4</sup> congruent to  $1 \pmod{4}$ .

Suppose Q is the largest prime congruent to 1 (mod 4).

If q is a prime dividing  $(2 \cdot 3 \cdot 5 \cdots Q)^2 + 1$ , then

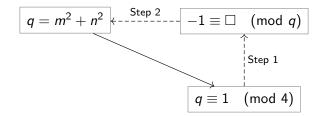
$$(2 \cdot 3 \cdot 5 \cdots Q)^2 \equiv -1 \pmod{q}.$$

This means that  $q \equiv 1 \pmod{4}$ .

But q must also be larger than Q, since q ≠ 2, 3, 5, ..., Q. Contradiction!

<sup>4</sup>Compare this proof to Infinity of Primes I, Slide 14 (Euclid).

Here's how we'll finish proving the Theorem:



From now on, let  $G = \{1, 2, ..., q - 1\}.$ 

So for any  $a \in G$ , there is an  $a^* \in G$  with

$$a \cdot a^* \equiv 1 \pmod{q}$$
.

#### Step 1

If q is a prime number congruent to 1 (mod 4), then -1 is a square modulo q.

**Proof.** We collect the elements of G into subsets of the form

$$E_a := \{a, a^*, q-a, q-a^*\}.$$

This set has size 4, unless some of the elements are repeated.

Take a = 1 for example, which is its own multiplicative inverse.

Then  $E_1 = \{1, q - 1\}.$ 

Since  $q \neq 2$ , we see that  $E_1$  has size 2, not 4.

Let's count the size of  $E_a = \{a, a^*, q - a, q - a^*\}$  for  $a \neq 1$ .

First check if 
$$a = a^*$$
.  
If  $a = a^*$ , then  $a^2 \equiv 1 \pmod{q}$ .

Substract 1 from both sides, so  $(a-1)(a+1) \equiv 0 \pmod{q}$ .

Since  $a \neq 1$ , a - 1 has a multiplicative inverse modulo q.

• Multiply both sides by  $(a-1)^*$  to get  $a+1 \equiv 0 \pmod{q}$ .

• Therefore  $a \equiv -1 \pmod{q}$ , and so a = q - 1.

## Proof of Step 1

So  $E_1 = E_{q-1}$  has size 2, and this covers the case where  $a^* = a$ . Another possibility is a = q - a, which means that q = 2a. X But q is odd, so this can't happen.

The next case<sup>5</sup> is when  $a = q - a^*$ 

Rearranging terms, this also means that  $a^* = q - a$ .

Since 
$$a \neq 1, q - 1$$
, we see that  $a \neq a^*$ . And sc

$$E_a = \{a, a^*, q - a, q - a^*\} = \{a, a^*\}$$

has size 2.

Most importantly, we also have  $a^2 \equiv -1 \pmod{q}$ .

<sup>5</sup>Note: in this case, *a* cannot be 1 or q - 1.

To summarize:

1 
$$E_1 = E_{q-1} = \{1, q-1\}$$
 has size 2.

**2** If 
$$a^2 \equiv -1 \pmod{q}$$
, then  $E_a = \{a, a^*\}$  has size 2.

**3** For all other *a*, each element is distinct; so  $E_a$  has size 4.

Of course, G doesn't always have elements of the second type. For example:

✓ If 
$$q = 101$$
, then  $(10)^2 \equiv -1 \pmod{q}$ .

× If q = 7, then  $a^2 \equiv 1, 2, 4 \pmod{q}$ .

This splits up G into subsets of size 2 and 4:

If −1 is not a square modulo q, then there is precisely one subset of size 2: {1, q − 1}.

There are two subsets of size 2 otherwise.

Everything else is containing in a subset of size 4.

Let  $c_2$  count the number of such subsets of size 2, so  $c_2 = 1$  or 2.

Let  $c_4$  be the number of distinct subsets  $E_a$  of size 4.

Then we have

$$2c_2 + 4c_4 = q - 1.$$

Reducing modulo 4, we get

$$q \equiv 1 + 2c_2 \pmod{4}.$$

From this, we see that

$$c_2 = egin{cases} 1 & ext{if } q \equiv 3 \ ( ext{mod } 4), \ 2 & ext{if } q \equiv 1 \ ( ext{mod } 4). \end{cases}$$

This proves Step 1, since  $q \equiv 1 \pmod{4}$  implies there are two subsets of size 2.

11

#### Step 2

If -1 is a square modulo q, then q is a sum of two squared integers.

**Proof.** Let  $j \in G$  be such that  $j^2 \equiv -1 \pmod{q}$ .

Consider a - jb for integers a, b with  $0 \le a, b < \sqrt{q}$ .

■ Key point: there are > √q choices for each of a and b (because we include 0).

So there are more than  $(\sqrt{q})^2 = q$  pairs (a, b).

Let's look at  $a - jb \pmod{q}$ .

## Proof of Step 2

There are q possible values for  $a - jb \pmod{q}$ .

**Pigeonhole principle:** If you sort > q items<sup>6</sup> into q bins<sup>7</sup>, one of the bins must contain (at least) two items.

So there are two *different* pairs (a, b) and (a', b') with

$$a-jb\equiv a'-jb' \pmod{q}.$$

Rearranging, we get

$$a-a'\equiv j(b-b') \pmod{q}.$$

Set 
$$x = a - a'$$
 and  $y = b - b'$ , so  
 $x \equiv jy \pmod{q}$ .

<sup>6</sup>*a – jb* <sup>7</sup>its value modulo *q* 

## Proof of Step 2

Squaring both sides, we get

$$x^2 \equiv j^2 y^2 \pmod{q}$$
$$\equiv -y^2 \pmod{q}$$

So q divides  $x^2 + y^2$ . Almost there!

Since 
$$0 \le a, a' < \sqrt{q}$$
, we have  $|x| = |a - a'| < \sqrt{q}$ 

So  $x^2 < q$ , and the same is true for  $y^2$ .

Then  $x^2 + y^2 < 2q$  and is divisible by q.

Hence 
$$x^2 + y^2 = 0$$
 or *q*.

If 
$$x^2 + y^2 = 0$$
, then  $x = 0$  and  $y = 0$ .

But then a = a' and b = b'.

We used the pigeonhole principle to find *distinct* pairs (a, b) and (a', b'), so this can't happen.

And we're done, because the only possibility left is that  $x^2 + y^2 = q$ .

Combining Steps 1 and 2 proves the rest of the Theorem.

## Constructive proof of Step 1

#### Lemma<sup>8</sup>

Since q is prime, we have 
$$(q-1)! \equiv -1 \pmod{q}$$
.

**Proof.** Recall that 1 and q - 1 are the only elements of G which are their own inverse.

Write the remaining 2Q := q - 3 elements as  $a_1, a_1^*, \dots, a_Q, a_Q^*$ . Then

$$egin{aligned} & q-1)! = (q-1) \prod_{k=1}^Q a_k a_k^* \ & \equiv (-1) \prod_{k=1}^Q 1 \pmod{q} \end{aligned}$$

This is  $\equiv -1 \pmod{q}$ , so we're done.

<sup>8</sup>Part of Wilson's Theorem

# Constructive proof of Step 1

Now note that

$$(q-1)! = 1 \cdots \left(\frac{q-1}{2}\right) \cdot \left(\frac{q+1}{2}\right) \cdots (q-1)$$
$$= 1 \cdots \left(\frac{q-1}{2}\right) \cdot \underbrace{\left(q - \frac{q-1}{2}\right) \cdots (q-1)}_{\frac{q-1}{2} \text{ terms}}$$
$$\equiv 1^2 \cdots \left(\frac{q-1}{2}\right)^2 \cdot (-1)^{\frac{q-1}{2}} \pmod{q}.$$

But  $\frac{q-1}{2}$  is even. So, after applying the Lemma, we see that

$$-1 \equiv \left[\left(rac{q-1}{2}
ight)!
ight]^2 \pmod{q}.$$

## A 'one-line' proof

Let  $\ensuremath{\mathbb{N}}$  denote the positive integers. Consider the set

$$S := \{(x, y, z) \in \mathbb{N}^3 : x^2 + 4yz = q\}.$$

For example, if q = 1 + 4N, then  $(1, 1, N) \in S$ .

• Define a map 
$$f: S \to S$$
 by  $f(x, y, z) = (x, z, y)$ .

Since 
$$x^2 + 4yz = x^2 + 4zy$$
, this map is well-defined<sup>9</sup>.

If we apply f twice, then we get back our original input:

$$f(f(x,y,z)) = (x,y,z).$$

Such a function is called an *involution*.

<sup>9</sup>That is, if  $(x,y,z)\in S$ , then  $f(x,y,z)\in S$ 

**Remark.** A fixed point of f is any point for which f(x, y, z) = (x, y, z).

But this means that y = z, and so  $x^2 + 4y^2 = q$ .

That is,  $q = x^2 + (2y)^2$ , which is exactly what we want!

So it suffices to show that f has at least one fixed point.

## A 'one-line' proof

To do this, we define another involution<sup>10</sup>:

$$g(x, y, z) = \begin{cases} (x + 2z, z, y - x - z) & \text{if } x < y - z, \\ (2y - x, y, x - y + z) & \text{if } y - z < x < 2y, \\ (x - 2y, x - y + z, y) & \text{if } x > 2y. \end{cases}$$

Let's find its fixed points, i.e. where g(x, y, z) = (x, y, z)If x < y - z, then

$$x + 2z = x,$$
$$z = y,$$
$$y - x - z = z.$$

X The only possibility is x = y = z = 0, but this doesn't satisfy x < y - z.

**X** Similarly for x > 2y. <sup>10</sup>Exercise. Check this!

#### A 'one-line' proof

If y - z < x < 2y, then

$$2y - x = x,$$
  
$$y = y,$$
  
$$x - y + z = z.$$

So 
$$x = y$$
, and  $x, y, z > 0$ .  
Thus  $(x, x, z) \in S$  is a fixed point of  $g$ .  
But  $(x, x, z) \in S$  satisfies

$$q = x^2 + 4xz = x(x + 4z).$$

Since q is prime, x = 1 and hence z = N.

So g has a single fixed point (1, 1, N) when q = 1 + 4N.

We're practically done!

- Since g has exactly one fixed point, S must have an odd number of elements.
- Why? Pair each element  $(x, y, z) \in S$  with its buddy g(x, y, z).
- The only element that can't be paired is (1, 1, N).

$$\blacksquare \#S = 2( \text{ number of pairs}) + 1, \text{ so } \#S \text{ is odd.}$$

**Fact.** An involution, f, on a set of odd size must have a fixed point.

Why? The same reasoning as on the previous slide.

• We pair up each (x, y, z) with f(x, y, z)

So f has a fixed point, as desired.

This proof is due to Don Zagier (1990), building upon work of Roger Heath-Brown (1984).