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Introduction

Question. When can a prime number be written as a sum of two
positive squared integers?

We begin with some numerical observations:
3 2 = 12 + 12

7 3 = 12 + 2, but 2 is not a perfect square (
√
2 is irrational!)

3 5 = 12 + 22

7 7 = 12 + 6 = 22 + 3

7 11 = 12 + 10 = 22 + 7 = 32 + 2

3 13 = 22 + 32

3 17 = 12 + 42
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Let’s assume that q is an odd prime, so q ≡ 1 (mod 2).

What about modulo 4?

An odd number is congruent to 1 or 3 modulo 4, so q = 1+ 4N or
q = 3+ 4N.

From our list, only odd primes congruent to 1 modulo 4 are a sum
of squares. Coincidence?
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Let’s look at squares modulo 4:

02 ≡ 0 (mod 4)

12 ≡ 1 (mod 4)

22 ≡ 0 (mod 4)

32 ≡ 1 (mod 4).

So any sum of two squares, m2 + n2, is

m2 + n2 ≡


02 + 02 (mod 4)
02 + 12 (mod 4)
12 + 12 (mod 4)

≡


0 (mod 4)
1 (mod 4)
2 (mod 4)
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� If q = m2 + n2, then q ≡ 0, 1, 2 (mod 4).

� Since q is prime, it is not divisible by 4.

� If q ≡ 2 (mod 4), then q is divisible by 2 (since then
p = 2+ 4k). Hence q = 2.

Conclusion? Either q = 12 + 12, or q ≡ 1 (mod 4).
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So any odd prime which is a sum of two squares must be congruent
to 1 (mod 4).

Is the converse true? If q is an odd prime which is congruent to 1
(mod 4), must it be a sum of two squares?

The quick answer is: YES!

Theorem1

An odd prime number is a sum of two squared integers if and only
if it is congruent to 1 (mod 4).

But first we need a middle step to help bridge the gap.

1Attributed to Girard* (1625), Fermat* (1640), and Euler ( 1750)
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Observation. If q = m2 + n2, then q does not divide n.

� Why not? Otherwise q divides m2 = q − n2.

� Since q is prime and divides m2 = m ·m, it actually divides m.

� This means that q2 divides m2 + n2 = q, which is impossible!

So n 6≡ 0 (mod q).

In particular, it has a multiplicative inverse2, n∗, modulo q:

n · n∗ ≡ 1 (mod q).

2Infinity of Primes II, slide 6
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Since q = m2 + n2, we have

m2 + n2 ≡ 0 (mod q)

m2 ≡ −n2 (mod q)

m2 · (n∗)2 ≡ −1 (mod q)

(m · n∗)2 ≡ −1 (mod q),

and so −1 is a square modulo q.

What we know so far:

q = m2 + n2 −1 ≡ � (mod q)

q ≡ 1 (mod 4)
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Regarding that dashed arrow on the previous slide:

� If −1 is a square modulo q, then there is an integer j with
j2 ≡ −1 (mod q).

� Squaring both sides, we get j4 ≡ 1 (mod q).

� Alex’s rolling pin argument3 can be used here to show that 4
divides q − 1.

� But this is the same as saying q ≡ 1 (mod 4)

3Infinity of Primes II, Slide 11. Note that 4 is the size of {1, j , j2, j3}
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An aside: infinitely many

Fun fact: using what we know from the previous slide, we can show
that there are infinitely many primes4 congruent to 1 (mod 4).

� Suppose Q is the largest prime congruent to 1 (mod 4).

� If q is a prime dividing (2 · 3 · 5 · · ·Q)2 + 1, then

(2 · 3 · 5 · · ·Q)2 ≡ −1 (mod q).

� This means that q ≡ 1 (mod 4).

� But q must also be larger than Q, since q 6= 2, 3, 5, . . . ,Q.
Contradiction!

4Compare this proof to Infinity of Primes I, Slide 14 (Euclid).
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Roadmap

Here’s how we’ll finish proving the Theorem:

q = m2 + n2 −1 ≡ � (mod q)

q ≡ 1 (mod 4)

Step 2

Step 1

From now on, let G = {1, 2, . . . , q − 1}.

So for any a ∈ G , there is an a∗ ∈ G with

a · a∗ ≡ 1 (mod q).
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Proof of Step 1

Step 1

If q is a prime number congruent to 1 (mod 4), then −1 is a
square modulo q.

Proof. We collect the elements of G into subsets of the form

Ea := {a, a∗, q − a, q − a∗}.

This set has size 4, unless some of the elements are repeated.

Take a = 1 for example, which is its own multiplicative inverse.

Then E1 = {1, q − 1}.

Since q 6= 2, we see that E1 has size 2, not 4.
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Proof of Step 1

Let’s count the size of Ea = {a, a∗, q − a, q − a∗} for a 6= 1.

First check if a = a∗.
� If a = a∗, then a2 ≡ 1 (mod q).

� Substract 1 from both sides, so (a− 1)(a+ 1) ≡ 0 (mod q).

� Since a 6= 1, a− 1 has a multiplicative inverse modulo q.

� Multiply both sides by (a− 1)∗ to get a+ 1 ≡ 0 (mod q).

� Therefore a ≡ −1 (mod q), and so a = q − 1.
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Proof of Step 1

So E1 = Eq−1 has size 2, and this covers the case where a∗ = a.

Another possibility is a = q − a, which means that q = 2a.
7 But q is odd, so this can’t happen.

The next case5 is when a = q − a∗

� Rearranging terms, this also means that a∗ = q − a.

� Since a 6= 1, q − 1, we see that a 6= a∗. And so

Ea = {a, a∗, q − a, q − a∗} = {a, a∗}

has size 2.

� Most importantly, we also have a2 ≡ −1 (mod q).

5Note: in this case, a cannot be 1 or q − 1.
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Proof of Step 1

To summarize:

1 E1 = Eq−1 = {1, q − 1} has size 2.

2 If a2 ≡ −1 (mod q), then Ea = {a, a∗} has size 2.

3 For all other a, each element is distinct; so Ea has size 4.

Of course, G doesn’t always have elements of the second type. For
example:

3 If q = 101, then (10)2 ≡ −1 (mod q).

7 If q = 7, then a2 ≡ 1, 2, 4 (mod q).
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Proof of Step 1

This splits up G into subsets of size 2 and 4:

� If −1 is not a square modulo q, then there is precisely one
subset of size 2: {1, q − 1}.

� There are two subsets of size 2 otherwise.

� Everything else is containing in a subset of size 4.

Let c2 count the number of such subsets of size 2, so c2 = 1 or 2.

Let c4 be the number of distinct subsets Ea of size 4.
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Proof of Step 1

Then we have
2c2 + 4c4 = q − 1.

Reducing modulo 4, we get

q ≡ 1+ 2c2 (mod 4).

From this, we see that

c2 =

{
1 if q ≡ 3 (mod 4),
2 if q ≡ 1 (mod 4).

This proves Step 1, since q ≡ 1 (mod 4) implies there are two
subsets of size 2. �
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Proof of Step 2

Step 2
If −1 is a square modulo q, then q is a sum of two squared integers.

Proof. Let j ∈ G be such that j2 ≡ −1 (mod q).

� Consider a− jb for integers a, b with 0 ≤ a, b <
√
q.

� Key point: there are >
√
q choices for each of a and b

(because we include 0).

� So there are more than (
√
q)2 = q pairs (a, b).

Let’s look at a− jb (mod q).
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Proof of Step 2

There are q possible values for a− jb (mod q).
Pigeonhole principle: If you sort > q items6 into q bins7, one of
the bins must contain (at least) two items.

� So there are two different pairs (a, b) and (a′, b′) with

a− jb ≡ a′ − jb′ (mod q).

� Rearranging, we get

a− a′ ≡ j(b − b′) (mod q).

� Set x = a− a′ and y = b − b′, so

x ≡ jy (mod q).

6a− jb
7its value modulo q
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Proof of Step 2

Squaring both sides, we get

x2 ≡ j2y2 (mod q)

≡ −y2 (mod q).

So q divides x2 + y2. Almost there!

� Since 0 ≤ a, a′ <
√
q, we have |x | = |a− a′| < √q

� So x2 < q, and the same is true for y2.

� Then x2 + y2 < 2q and is divisible by q.

� Hence x2 + y2 = 0 or q.
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Proof of Step 2

If x2 + y2 = 0, then x = 0 and y = 0.

� But then a = a′ and b = b′.

� We used the pigeonhole principle to find distinct pairs (a, b)
and (a′, b′), so this can’t happen.

And we’re done, because the only possibility left is that
x2 + y2 = q. �

Combining Steps 1 and 2 proves the rest of the Theorem.
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Constructive proof of Step 1

Lemma8

Since q is prime, we have (q − 1)! ≡ −1 (mod q).

Proof. Recall that 1 and q − 1 are the only elements of G which
are their own inverse.

Write the remaining 2Q := q − 3 elements as a1, a
∗
1, . . . , aQ , a

∗
Q .

Then

(q − 1)! = (q − 1)
Q∏

k=1

aka
∗
k

≡ (−1)
Q∏

k=1

1 (mod q).

This is ≡ −1 (mod q), so we’re done. �
8Part of Wilson’s Theorem
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Constructive proof of Step 1

Now note that

(q − 1)! = 1 · · ·
(
q − 1
2

)
·
(
q + 1
2

)
· · · (q − 1)

= 1 · · ·
(
q − 1
2

)
·
(
q − q − 1

2

)
· · · (q − 1)︸ ︷︷ ︸

q−1
2 terms

≡ 12 · · ·
(
q − 1
2

)2

· (−1)
q−1
2 (mod q).

But q−1
2 is even. So, after applying the Lemma, we see that

−1 ≡
[(

q − 1
2

)
!

]2

(mod q).

�
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A ‘one-line’ proof

Let N denote the positive integers. Consider the set

S := {(x , y , z) ∈ N3 : x2 + 4yz = q}.

For example, if q = 1+ 4N, then (1, 1,N) ∈ S .

� Define a map f : S → S by f (x , y , z) = (x , z , y).

� Since x2 + 4yz = x2 + 4zy , this map is well-defined9.

� If we apply f twice, then we get back our original input:

f (f (x , y , z)) = (x , y , z).

Such a function is called an involution.

9That is, if (x , y , z) ∈ S , then f (x , y , z) ∈ S
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A ‘one-line’ proof

Remark. A fixed point of f is any point for which
f (x , y , z) = (x , y , z).

But this means that y = z , and so x2 + 4y2 = q.

That is, q = x2 + (2y)2, which is exactly what we want!

So it suffices to show that f has at least one fixed point.
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A ‘one-line’ proof

To do this, we define another involution10:

g(x , y , z) =


(x + 2z , z , y − x − z) if x < y − z ,

(2y − x , y , x − y + z) if y − z < x < 2y ,
(x − 2y , x − y + z , y) if x > 2y .

Let’s find its fixed points, i.e. where g(x , y , z) = (x , y , z)

� If x < y − z , then

x + 2z = x ,

z = y ,

y − x − z = z .

7 The only possibility is x = y = z = 0, but this doesn’t satisfy
x < y − z .

7 Similarly for x > 2y .
10Exercise. Check this!

27 / 30



A ‘one-line’ proof

If y − z < x < 2y , then

2y − x = x ,

y = y ,

x − y + z = z .

So x = y , and x , y , z > 0.

� Thus (x , x , z) ∈ S is a fixed point of g .

� But (x , x , z) ∈ S satisfies

q = x2 + 4xz = x(x + 4z).

� Since q is prime, x = 1 and hence z = N.

� So g has a single fixed point (1, 1,N) when q = 1+ 4N.
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A ‘one-line’ proof

We’re practically done!

� Since g has exactly one fixed point, S must have an odd
number of elements.

� Why? Pair each element (x , y , z) ∈ S with its buddy
g(x , y , z).

� The only element that can’t be paired is (1, 1,N).

� #S = 2( number of pairs) + 1, so #S is odd.
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A ‘one-line’ proof

Fact. An involution, f , on a set of odd size must have a fixed
point.

� Why? The same reasoning as on the previous slide.

� We pair up each (x , y , z) with f (x , y , z)

So f has a fixed point, as desired. �

This proof is due to Don Zagier (1990), building upon work of
Roger Heath-Brown (1984).
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