Primes Which Are a Sum of Two Squares

Scott Kirila

June 25, 2020
EXETER

Overview

(1) Statement of the Theorem
(2) An aside: infinitely many
(3) Roadmap
(4) Proof of Step 1
(5) Proof of Step 2
(6) Step 1 (again)
(7) A 'one-line' proof

Question. When can a prime number be written as a sum of two positive squared integers?

We begin with some numerical observations:
$\checkmark 2=1^{2}+1^{2}$
$\times 3=1^{2}+2$, but 2 is not a perfect square ($\sqrt{2}$ is irrational! $)$
$\checkmark 5=1^{2}+2^{2}$
$x 7=1^{2}+6=2^{2}+3$
$x 11=1^{2}+10=2^{2}+7=3^{2}+2$
$\checkmark 13=2^{2}+3^{2}$
$\checkmark 17=1^{2}+4^{2}$

Let's assume that q is an odd prime, so $q \equiv 1(\bmod 2)$.

What about modulo 4?

An odd number is congruent to 1 or 3 modulo 4 , so $q=1+4 N$ or $q=3+4 N$.

From our list, only odd primes congruent to 1 modulo 4 are a sum of squares. Coincidence?

Let's look at squares modulo 4:

$$
\begin{aligned}
& 0^{2} \equiv 0 \quad(\bmod 4) \\
& 1^{2} \equiv 1 \quad(\bmod 4) \\
& 2^{2} \equiv 0 \quad(\bmod 4) \\
& 3^{2} \equiv 1 \quad(\bmod 4)
\end{aligned}
$$

So any sum of two squares, $m^{2}+n^{2}$, is

$$
m^{2}+n^{2} \equiv\left\{\begin{array} { l l }
{ 0 ^ { 2 } + 0 ^ { 2 } } & { (\operatorname { m o d } 4) } \\
{ 0 ^ { 2 } + 1 ^ { 2 } } & { (\operatorname { m o d } 4) } \\
{ 1 ^ { 2 } + 1 ^ { 2 } } & { (\operatorname { m o d } 4) }
\end{array} \equiv \left\{\begin{array}{ll}
0 & (\bmod 4) \\
1 & (\bmod 4) \\
2 & (\bmod 4)
\end{array}\right.\right.
$$

- If $q=m^{2}+n^{2}$, then $q \equiv 0,1,2(\bmod 4)$.
- Since q is prime, it is not divisible by 4 .
- If $q \equiv 2(\bmod 4)$, then q is divisible by 2 (since then $p=2+4 k$). Hence $q=2$.

Conclusion? Either $q=1^{2}+1^{2}$, or $q \equiv 1(\bmod 4)$.

So any odd prime which is a sum of two squares must be congruent to $1(\bmod 4)$.

Is the converse true? If q is an odd prime which is congruent to 1 $(\bmod 4)$, must it be a sum of two squares?

The quick answer is: YES!

Theorem ${ }^{1}$

An odd prime number is a sum of two squared integers if and only if it is congruent to $1(\bmod 4)$.

But first we need a middle step to help bridge the gap.

[^0]Observation. If $q=m^{2}+n^{2}$, then q does not divide n.
\square Why not? Otherwise q divides $m^{2}=q-n^{2}$.
\square Since q is prime and divides $m^{2}=m \cdot m$, it actually divides m.

- This means that q^{2} divides $m^{2}+n^{2}=q$, which is impossible!

So $n \not \equiv 0(\bmod q)$.
In particular, it has a multiplicative inverse ${ }^{2}, n^{*}$, modulo q :

$$
n \cdot n^{*} \equiv 1 \quad(\bmod q)
$$

Since $q=m^{2}+n^{2}$, we have

$$
\begin{aligned}
m^{2}+n^{2} & \equiv 0 \quad(\bmod q) \\
m^{2} & \equiv-n^{2} \quad(\bmod q) \\
m^{2} \cdot\left(n^{*}\right)^{2} & \equiv-1 \quad(\bmod q) \\
\left(m \cdot n^{*}\right)^{2} & \equiv-1 \quad(\bmod q)
\end{aligned}
$$

and so -1 is a square modulo q.
What we know so far:

Regarding that dashed arrow on the previous slide:

- If -1 is a square modulo q, then there is an integer j with $j^{2} \equiv-1(\bmod q)$.
\square Squaring both sides, we get $j^{4} \equiv 1(\bmod q)$.
- Alex's rolling pin argument ${ }^{3}$ can be used here to show that 4 divides $q-1$.
- But this is the same as saying $q \equiv 1(\bmod 4)$

An aside: infinitely many

Fun fact: using what we know from the previous slide, we can show that there are infinitely many primes ${ }^{4}$ congruent to $1(\bmod 4)$.
\square Suppose Q is the largest prime congruent to $1(\bmod 4)$.
\square If q is a prime dividing $(2 \cdot 3 \cdot 5 \cdots Q)^{2}+1$, then

$$
(2 \cdot 3 \cdot 5 \cdots Q)^{2} \equiv-1(\bmod q)
$$

- This means that $q \equiv 1(\bmod 4)$.
\square But q must also be larger than Q, since $q \neq 2,3,5, \ldots, Q$. Contradiction!

[^1]Here's how we'll finish proving the Theorem:

From now on, let $G=\{1,2, \ldots, q-1\}$.
So for any $a \in G$, there is an $a^{*} \in G$ with

$$
a \cdot a^{*} \equiv 1 \quad(\bmod q)
$$

Step 1

If q is a prime number congruent to $1(\bmod 4)$, then -1 is a square modulo q.

Proof. We collect the elements of G into subsets of the form

$$
E_{a}:=\left\{a, a^{*}, q-a, q-a^{*}\right\} .
$$

This set has size 4, unless some of the elements are repeated.
Take $a=1$ for example, which is its own multiplicative inverse.
Then $E_{1}=\{1, q-1\}$.
Since $q \neq 2$, we see that E_{1} has size 2 , not 4 .

Let's count the size of $E_{a}=\left\{a, a^{*}, q-a, q-a^{*}\right\}$ for $a \neq 1$.
First check if $a=a^{*}$.

- If $a=a^{*}$, then $a^{2} \equiv 1(\bmod q)$.

■ Substract 1 from both sides, so $(a-1)(a+1) \equiv 0(\bmod q)$.

■ Since $a \neq 1, a-1$ has a multiplicative inverse modulo q.

■ Multiply both sides by $(a-1)^{*}$ to get $a+1 \equiv 0(\bmod q)$.
\square Therefore $a \equiv-1(\bmod q)$, and so $a=q-1$.

So $E_{1}=E_{q-1}$ has size 2 , and this covers the case where $a^{*}=a$.
Another possibility is $a=q-a$, which means that $q=2 a$.
X But q is odd, so this can't happen.
The next case ${ }^{5}$ is when $a=q-a^{*}$
\square Rearranging terms, this also means that $a^{*}=q-a$.

- Since $a \neq 1, q-1$, we see that $a \neq a^{*}$. And so

$$
E_{a}=\left\{a, a^{*}, q-a, q-a^{*}\right\}=\left\{a, a^{*}\right\}
$$

has size 2.

- Most importantly, we also have $a^{2} \equiv-1(\bmod q)$.

[^2]To summarize:
(1) $E_{1}=E_{q-1}=\{1, q-1\}$ has size 2 .
(2) If $a^{2} \equiv-1(\bmod q)$, then $E_{a}=\left\{a, a^{*}\right\}$ has size 2 .
(3) For all other a, each element is distinct; so E_{a} has size 4 .

Of course, G doesn't always have elements of the second type. For example:
\checkmark If $q=101$, then $(10)^{2} \equiv-1(\bmod q)$.
x If $q=7$, then $a^{2} \equiv 1,2,4(\bmod q)$.

This splits up G into subsets of size 2 and 4 :
\square If -1 is not a square modulo q, then there is precisely one subset of size 2: $\{1, q-1\}$.

- There are two subsets of size 2 otherwise.

■ Everything else is containing in a subset of size 4.

Let c_{2} count the number of such subsets of size 2 , so $c_{2}=1$ or 2 .

Let c_{4} be the number of distinct subsets E_{a} of size 4 .

Then we have

$$
2 c_{2}+4 c_{4}=q-1
$$

Reducing modulo 4, we get

$$
q \equiv 1+2 c_{2}(\bmod 4)
$$

From this, we see that

$$
c_{2}= \begin{cases}1 & \text { if } q \equiv 3(\bmod 4) \\ 2 & \text { if } q \equiv 1(\bmod 4)\end{cases}
$$

This proves Step 1 , since $q \equiv 1(\bmod 4)$ implies there are two subsets of size 2 .

Step 2

If -1 is a square modulo q, then q is a sum of two squared integers.

Proof. Let $j \in G$ be such that $j^{2} \equiv-1(\bmod q)$.

- Consider $a-j b$ for integers a, b with $0 \leq a, b<\sqrt{q}$.
- Key point: there are $>\sqrt{q}$ choices for each of a and b (because we include 0).
- So there are more than $(\sqrt{q})^{2}=q$ pairs (a, b).

Let's look at $a-j b(\bmod q)$.

There are q possible values for $a-j b(\bmod q)$.
Pigeonhole principle: If you sort $>q$ items ${ }^{6}$ into q bins 7, one of the bins must contain (at least) two items.

- So there are two different pairs (a, b) and $\left(a^{\prime}, b^{\prime}\right)$ with

$$
a-j b \equiv a^{\prime}-j b^{\prime}(\bmod q)
$$

- Rearranging, we get

$$
a-a^{\prime} \equiv j\left(b-b^{\prime}\right)(\bmod q)
$$

\square Set $x=a-a^{\prime}$ and $y=b-b^{\prime}$, so

$$
x \equiv j y(\bmod q)
$$

[^3]Squaring both sides, we get

$$
\begin{aligned}
x^{2} & \equiv j^{2} y^{2}(\bmod q) \\
& \equiv-y^{2}(\bmod q)
\end{aligned}
$$

So q divides $x^{2}+y^{2}$. Almost there!
\square Since $0 \leq a, a^{\prime}<\sqrt{q}$, we have $|x|=\left|a-a^{\prime}\right|<\sqrt{q}$

- So $x^{2}<q$, and the same is true for y^{2}.
- Then $x^{2}+y^{2}<2 q$ and is divisible by q.
\square Hence $x^{2}+y^{2}=0$ or q.

If $x^{2}+y^{2}=0$, then $x=0$ and $y=0$.
\square But then $a=a^{\prime}$ and $b=b^{\prime}$.
\square We used the pigeonhole principle to find distinct pairs (a, b) and (a^{\prime}, b^{\prime}), so this can't happen.

And we're done, because the only possibility left is that $x^{2}+y^{2}=q$.

Combining Steps 1 and 2 proves the rest of the Theorem.

Constructive proof of Step 1

Lemma ${ }^{8}$

Since q is prime, we have $(q-1)!\equiv-1(\bmod q)$.
Proof. Recall that 1 and $q-1$ are the only elements of G which are their own inverse.
Write the remaining $2 Q:=q-3$ elements as $a_{1}, a_{1}^{*}, \ldots, a_{Q}, a_{Q}^{*}$. Then

$$
\begin{aligned}
(q-1)! & =(q-1) \prod_{k=1}^{Q} a_{k} a_{k}^{*} \\
& \equiv(-1) \prod_{k=1}^{Q} 1 \quad(\bmod q)
\end{aligned}
$$

This is $\equiv-1(\bmod q)$, so we're done.

Constructive proof of Step 1

Now note that

$$
\begin{aligned}
(q-1)! & =1 \cdots\left(\frac{q-1}{2}\right) \cdot\left(\frac{q+1}{2}\right) \cdots(q-1) \\
& =1 \cdots\left(\frac{q-1}{2}\right) \cdot \underbrace{\left(q-\frac{q-1}{2}\right) \cdots(q-1)}_{\frac{q-1}{2} \text { terms }} \\
& \equiv 1^{2} \cdots\left(\frac{q-1}{2}\right)^{2} \cdot(-1)^{\frac{q-1}{2}} \quad(\bmod q) .
\end{aligned}
$$

But $\frac{q-1}{2}$ is even. So, after applying the Lemma, we see that

$$
-1 \equiv\left[\left(\frac{q-1}{2}\right)!\right]^{2} \quad(\bmod q)
$$

Let \mathbb{N} denote the positive integers. Consider the set

$$
S:=\left\{(x, y, z) \in \mathbb{N}^{3}: x^{2}+4 y z=q\right\} .
$$

For example, if $q=1+4 N$, then $(1,1, N) \in S$.
\square Define a map $f: S \rightarrow S$ by $f(x, y, z)=(x, z, y)$.
\square Since $x^{2}+4 y z=x^{2}+4 z y$, this map is well-defined ${ }^{9}$.
■ If we apply f twice, then we get back our original input:

$$
f(f(x, y, z))=(x, y, z)
$$

Such a function is called an involution.
${ }^{9}$ That is, if $(x, y, z) \in S$, then $f(x, y, z) \in S$

Remark. A fixed point of f is any point for which $f(x, y, z)=(x, y, z)$.

But this means that $y=z$, and so $x^{2}+4 y^{2}=q$.

That is, $q=x^{2}+(2 y)^{2}$, which is exactly what we want!

So it suffices to show that f has at least one fixed point.

To do this, we define another involution ${ }^{10}$:

$$
g(x, y, z)= \begin{cases}(x+2 z, z, y-x-z) & \text { if } x<y-z \\ (2 y-x, y, x-y+z) & \text { if } y-z<x<2 y \\ (x-2 y, x-y+z, y) & \text { if } x>2 y\end{cases}
$$

Let's find its fixed points, i.e. where $g(x, y, z)=(x, y, z)$

- If $x<y-z$, then

$$
\begin{aligned}
x+2 z & =x, \\
z & =y, \\
y-x-z & =z .
\end{aligned}
$$

x The only possibility is $x=y=z=0$, but this doesn't satisfy $x<y-z$.
x Similarly for $x>2 y$.
${ }^{10}$ Exercise. Check this!

If $y-z<x<2 y$, then

$$
\begin{aligned}
2 y-x & =x, \\
y & =y, \\
x-y+z & =z .
\end{aligned}
$$

So $x=y$, and $x, y, z>0$.

- Thus $(x, x, z) \in S$ is a fixed point of g.
- But $(x, x, z) \in S$ satisfies

$$
q=x^{2}+4 x z=x(x+4 z)
$$

- Since q is prime, $x=1$ and hence $z=N$.
- So g has a single fixed point $(1,1, N)$ when $q=1+4 N$.

We're practically done!

- Since g has exactly one fixed point, S must have an odd number of elements.
- Why? Pair each element $(x, y, z) \in S$ with its buddy $g(x, y, z)$.
- The only element that can't be paired is $(1,1, N)$.
$\square S=2($ number of pairs) +1 , so $\# S$ is odd.

Fact. An involution, f, on a set of odd size must have a fixed point.

- Why? The same reasoning as on the previous slide.
- We pair up each (x, y, z) with $f(x, y, z)$

So f has a fixed point, as desired.

This proof is due to Don Zagier (1990), building upon work of Roger Heath-Brown (1984).

[^0]: ${ }^{1}$ Attributed to Girard* (1625), Fermat* (1640), and Euler (1750)

[^1]: ${ }^{4}$ Compare this proof to Infinity of Primes I, Slide 14 (Euclid).

[^2]: ${ }^{5}$ Note: in this case, a cannot be 1 or $q-1$.

[^3]: ${ }^{6} a-j b$
 ${ }^{7}$ its value modulo q

