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1 Introduction

In 1770, Waring asked the following question: given d 2 N, can every positive integer can
be written as a sum of a bounded number of dth powers of positive integers? We call a set
A in N0 a basis of order n if every element of N0 can be written as a sum of n elements of
A, so the question can be rephrased as, is the set of dth powers of positive integers a basis
of finite order? This was proved to be true. Rather than trying to prove existence directly,
it is helpful to be “greedier” and instead try to estimate the number of solutions rd,n(b) to

yd1 + · · ·+ ydn = b, yi 2 N0 (1)

for given b, n, d. If rd,n(b) > 0 for all su�ciently large b for some n, then Waring’s problem
for dth powers is true. (It is su�cient for rd,n(b) > 0 for su�ciently large b because then we
could always increase n to take care of small numbers.)

As described in [2, Chapter 5], the Hardy-Littlewood Circle Method can be used to
estimate rk,n(b). Note that rk,n(b) is the coe�cient of e2⇡ibx in
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This product expands into a sum of functions of the form e2⇡imx. Note that the functions
e2⇡imx are orthonormal over [0, 1], that is, for p, q 2 Z,
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Then to pick out the coe�cient of e2⇡ibx, we multiply (2) by e�2⇡ibx and integrate from 0 to
1:
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For s � 2k + 1, this gives (after a lot of work)
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where S(N) is the singular series for Waring’s Problem; it is defined as an exponential sum
and satisfies c1 < S(N) < c2 for some positive constants c1, c2. The basic method is to divide
the integral (3) into two parts, into an integral over the major arcs and over the minor arcs,
which give the main contribution and the error term, respectively. Note that (4) makes sense
intuitively: Given (1), if we choose yi to be any numbers in [0, N

1
d ], then we get all possible

ways of expressing the numbers between 0 and N as a sum of dth powers (as well as some
ways to express greater numbers). There are approximately N

n
d choices for the n numbers;

we can expect on the order of 1
N

of these to sum to N , giving the estimate up to a constant
factor.

We could also ask an analogue of Waring’s Problem for finite fields instead of Z; that
is, can every number in Fq can be written as a sum of a bounded number of dth powers
of positive integers, and if so, what is the minimum number needed? Note that the first
question is less interesting in this case: either the dth powers form a proper subfield of Fq,
in which case the answer is no, or the dth powers do not form a proper subfield, and the
answer is yes because Fq is finite. To answer the second question, we use a similar idea
to Waring’s Problem for Z, namely encapsulate the number of representations as a sum of
n dth powers in a sum of orthonormal functions. Instead of e2⇡im, we consider a system
of orthonormal functions on Fq called the additive characters �. Hence instead of (2), we
consider the product

0

@
X

y2Fq

�(yd)

1

A
n

=
X

y1,...,yn2Fq

�(yd1 + · · ·+ ydn). (5)

(The additive characters have the nice property that �(a+ b) = �(a)�(b), like the property
of the exponential function e2⇡imx. In fact, as we will see, the characters are given by
exponential functions.) Note (5) is true for all characters. To extract out the coe�cient
of �(b), we multiply by �(b), average over all distinct characters �, and take advantage of
orthonormality to get

rd,n(b) =
1

q
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�(b)

9
=

; . (6)

Compare this to (3), where we multiplied by e�2⇡ibx and integrated over 0  x  1. In the
next section we will give define and give properties of characters that help us estimate (6).

2 Characters

To evaluate (6) it would be helpful if �(yd) = �(y)d. However, this cannot hold as we
defined � so that it would preserve additive structure, not multiplicative structure. Thus to
evaluate (6) we would like to rewrite it as a sum of functions  such that  (ab) =  (a) (b),
and such that the set of  are orthonormal. Thus we will need both the concepts of additive
and multiplicative characters. We make this precise below.
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Definition 2.1: Let G be an abelian group. A character of G is a homomorphism from G
to C⇥. A character is trivial if it is identically 1. We denote the trivial character by �0 or
 0.

Definition 2.2: Let Fq be a given finite field. An additive character � : F+
q ! C is a

character � with Fq considered as an additive group. A multiplicative character  : F⇥
q ! C

is a character with F⇥
q = Fq � {0} considered as a multiplicative group. We extend  to Fq

by defining  (0) = 1 if  is trivial, and  (0) = 0 otherwise. Note that the extended  still
preserves multiplication.

We proceed to give an explicit description of characters for abelian groups. First, recall
the following theorem.

Theorem 2.3 (Structure Theorem for Abelian Groups): Let G be a finite abelian group.
Then there exist positive integers m1, . . . ,mk so that

G ⇠= Z/m1Z⇥ · · ·⇥ Z/mkZ.

Theorem 2.4: The group G = Z/m1Z⇥ · · ·⇥Z/mkZ has |G| characters and each is given
by an element (r1, . . . , rk) 2 Z/m1Z⇥ · · ·⇥ Z/mkZ:

�r1,...,rk(n1, . . . , nk) =
kY

j=1

e
2⇡irjnj

mj .

Moreover the set of characters bG form a multiplicative group isomorphic to G.

Proof. It is easy to check that � = �r1,...,rk is a homomorphism. Let ej be the element
in G with 1 in the jth coordinate and 0’s elsewhere. Since �(ej)mj = 1, we must have

�(ej) = e
2⇡irj
mj for some rj. Each element of G can be expressed as a combination of the ej,

so this shows all characters are in the above form.
For the second part, note that (r1, . . . , rk) 7! �r1,...,rk is an isomorphism.

Corollary 2.5: Every finite abelian group G has |G| characters.
Theorem 2.6 (Orthogonality relations): Let G be a finite abelian group and �j, 1  k  n
be all characters of G. Then

1. (Row orthogonality) h�j,�ki :=
1

|G|
X

g2G

�j(g)�k(g) =

(
0, j 6= k

1, j = k
.

2. (Column orthogonality)
nX

j=1

�j(g)�j(h) =

(
0, g 6= h

|G|, g = h
.

Proof. Write G as Z/m1Z⇥ · · ·⇥ Z/mkZ. Let (r1, . . . , rk) and (s1, . . . , sk) be in G. Then

h�r1,...,rk ,�s1,...,ski =
X

(p1,...,pk)2G

kY

j=1

e
2⇡i(rj�sj)pj

mj (7)

=
X

(p1,...,pk�1)2G

" 
k�1Y

j=1

e
2⇡i(rj�sj)pj

mj

!
mk�1X

pk=0

e2⇡i(rk�sk)pk

#
. (8)
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If (r1, . . . , rk) = (s1, . . . , sk) then (7) evaluates to |G|. Otherwise, we may assume without
loss of generality that rk 6= sk; then the inner sum in (8) evaluates to 0 by writing it as a
geometric series.

The proof for column orthogonality is similar.

The most useful case of row orthogonality is when we set �k = �0:

Corollary 2.7: If � is a character of G and � 6= �0 then
X

g2G

�(g) = 0.

Next we use these tools to give the additive and multiplicative characters explicitly. We
know that F⇥

q is cyclic; let ⇠ be a generator.

Theorem 2.8 (Multiplicative characters of Fq): The multiplicative characters of Fq are
given by

 j(⇠
n) = e

2⇡ijn
q�1

for 0  j < q � 1.

Proof. By identifying ⇠ 2 F⇥
q with 1 2 Z/(q � 1)Z, this follows directly from Theorem 2.4.

Describing the additive characters takes slightly more creativity, since it is inconvenient
to decompose F+

q into cyclic groups.

Theorem 2.9 (Additive characters of Fq): Suppose q = pr with p prime. The additive
characters of Fq are given by

�a(g) = e
2⇡i
p Tr(ag) (9)

for a 2 Fq where

Tr(g) = g + gp + · · ·+ gp
r�1

.

Proof. The automorphisms of Fq fixing Fp are generated by the Frobenius automorphism �
sending g to gp. Since Tr(g) is fixed under this operation, it must be in the ground field Fp.
This makes (9) well-defined since only the value of Tr(ag) modulo p matters in (9). The fact
that �a is a homomorphism comes directly from the fact that � is a homomorphism.

Since �1(ag) = �a(g), if �a = �b then �1(ag) = �1(bg) and �1((a � b)g) = 0. However,
�1 is not trivial (identically equal to 1) since there are at most pr�1 values of g such that
g + · · · + gp

r�1
= 0. Thus a = b. This shows all characters in our list are distinct. Since we

have found |G| characters we have found all of them.

Remark 2.10: In general, a n-dimensional complex representation of a group G is a ho-
momorphism ⇢ from G into GLn(C), and the character � of a representation is defined
by �(g) = Tr(⇢(g)). This coincides with Definition 2.1 for abelian G, if we just consider
1-dimensional representations, since ⇢ is multiplication by a constant and � is just that
constant.

The general case of Corollary 2.5 is replaced by the following: every finite group has a
number of irreducible characters equal to the number of conjugacy classes. The orthogonality
relations hold when we consider just irreducible characters, and with |G| replaced by the size
of the centralizer of g in the equation for column orthogonality.
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3 Gauss Sums

To relate additive characters to multiplicative characters, we need to evaluate sums in the
form

G( ,�) =
X

y2F⇥
q

 (y)�(y). (10)

where  is a multiplicative character and � is an additive character.
Suppose we wanted to write an additive character in terms of multiplicative characters.

By row orthogonality, 1
q�1

P
 2cF⇥

q
 (y) (g) equals 1 if y = g and is 0 otherwise. This allows

us to introduce multiplicative characters as follows: for y 2 F⇥
q ,

�(y) =
1

q � 1

X

g2F⇥
q

�(g)
X

 2cF⇥
q

 (y) (g)

=
1

q � 1

X

 2cF⇥
q

 (y)
X

g2F⇥
q

 (g)�(g)

=
1

q � 1

X

 2cF⇥
q

G( ,�) (y). (11)

The Gauss sums are the coe�cients of the expansion of � in terms of multiplicative charac-
ters. The next theorem tells us how to calculate Gauss sums.

Theorem 3.1: Let  0 and �0 denote the trivial multiplicative and additive characters,
respectively. Then

G( ,�) =

8
><

>:

q � 1,  =  0,� = �0

�1,  =  0,� 6= �0

0,  6=  0,� = �0

and
|G( ,�)| = p

q,  6=  0,� 6= �0

Proof. The first case is trivial. For the second case,

G( 0,�) =
X

y2F⇥
q

�(y) =

0

@
X

y2Fq

�(y)

1

A� 1 = �1

by Corollary 2.7. The third case directly from Corollary 2.7 with  .
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For the final case,

|G( ,�)|2 =
X

g1,g22F⇥
q

 (g1) (g2)�(g1)�(g2)

=
X

g1,g22F⇥
q

 (g�1
1 g2)�(g2 � g1)

=
X

h2F⇥
q

X

g12F⇥
q

 (h)�(g1(h� 1)) setting h = g�1
1 g2

=
X

h2F⇥
q

 (h)

2

4

0

@
X

g12Fq

�(g1(h� 1))

1

A� �(0)

3

5

=
X

h2F⇥
q

 (h)

0

@
X

g12Fq

�(g1(h� 1))

1

A by Corollary 2.7 with  

=  (1)q = q

In the last step, we used Corollary 2.7, noting that as g1 ranges over Fq, g1(h � 1) ranges
over Fq for h 6= 1, and is constantly 0 for h = 1.

We will need the following fact later on.

Proposition 3.2: For a 2 F⇥
q and b 2 Fq,

G( ,�ab) =  (a)G( ,�b).

Proof. Using the fact that �c(g) = �1(cg),

G( ,�ab) =
X

y2F⇥
q

 (y)�ab(y)

=
X

y2F⇥
q

 (y)�b(ay)

=
X

y2F⇥
q

 (a�1y)�b(y) replacing y ! a�1y

=  (a)�1
X

y2F⇥
q

 (y)�b(y)

=  (a)G( ,�b)

4 Enumerating Solutions

We return to our original problem. Rather than just work with sums of dth powers, we work
with diagonal equations

a1y
d1
1 + · · ·+ any

dn
n = b (12)
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where ai 2 F⇥
q and di 2 N. First, note that because of the following lemma, we can restrict

to case where di|q � 1.

Lemma 4.1: The multisets {yd|y 2 Fq} and {ygcd(d,q�1)|y 2 Fq} are equal.

Proof. Let ⇠ be a generator for F⇥
q , and write d = k gcd(d, q � 1) where gcd(k, q � 1) = 1.

Then removing the one occurrence of 0 in the two sets, we get {⇠jd|0  j < q � 1} and
{⇠j gcd(d,q�1)|0  j < q � 1}. The lemma follows from the fact that as multisets,

{jd (mod q � 1)|0  j < q � 1} = {j gcd(d, q � 1) (mod q � 1)|0  j < q � 1}.

Indeed, each multiple of gcd(d, q � 1) appears q�1
gcd(d,q�1) times on both sides.

As (12) always has the trivial solution when b = 0, we just need to estimate the number
of solutions to (12) when b 6= 0.

Theorem 4.2: [1, 6.37] Fix b 6= 0, di|q � 1 and let N be the number of solutions to (12)
when b 6= 0 is fixed. Then

|N � qn�1|  [(d1 � 1) · · · (dn � 1)� (1� q�
1
2 )M(d1, . . . , dn)]q

n�1
2

where M(d1, . . . , dn) is the number of n-tuples in the set

S :=

(
(j1, . . . , jn) 2 Zn|1  ji  di � 1 and

nX

i=1

ji
di

2 Z
)
.

Note that we would expect N to be close to qn�1, because there are qn possible choices
for (y1, . . . , yn) and q possible values for their sum.

Proof. We use the idea mentioned in the introduction. We have

N =
1

q

X

y1,...,yn2Fq ,�2cF+
q

�(a1y
d1
1 + · · ·+ any

dn
n )�(b) =

1

q

X

y1,...,yn2Fq ,�2cF+
q

�(a1y
d1
1 ) · · ·�(anydnn )�(b)

since by row orthogonality the inner sum is 1 if a1y
d1
1 + · · ·+any

dn
n = b and 0 otherwise. Note

that �0 contributes qn to the sum. Taking it out and factoring the remaining terms gives

N = qn�1 +
1

q

X

�2cF+
q ,� 6=�0

0

@�(b)
nY

j=1

X

yj2Fq

�(ajy
dj
j )

1

A (13)

We write the sums of additive characters as sums of multiplicative characters using the
following lemma.

Lemma 4.3: Let � be a nontrivial additive character and � a multiplicative character of
order d dividing q � 1. Then

X

y2Fq

�(ayd) =
d�1X

j=1

�(a)jG(�j,�).
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Proof. Note that � exists since the group of multiplicative characters is isomorphic to Z/(q�
1)Z by Theorem 2.4. Suppose � = �c. We write � as a sum of multiplicative characters
using (11), get the Gauss sum to be independent of a by using Proposition 3.2, and take out
the exponent as we were hoping to do:

X

y2Fq

�(ayd) =
X

y2Fq

�ac(y
d)

= 1 +
X

y2F⇥
q

�ac(y
d)

= 1 +
1

q � 1

X

 2cF⇥
q

X

y2F⇥
q

G( ,�ac) (y
d)

= 1 +
1

q � 1

X

 2cF⇥
q

 (a)G( ,�c)
X

y2Fq

 (y)d (14)

= 1 +
d�1X

j=0

�(a)jG(�j,�) (15)

=
d�1X

j=1

�(a)jG(�j,�) (16)

Note (15) follows since by Corollary 2.7,
P

y2F⇥
q
 (y)d = 0 unless  d is the trivial character,

which is true i↵  is a power of �. In that case, the inner sum in (14) is q � 1. In (16) we
used G( 0,�) = �1 (Theorem 3.1).

Using Lemma 4.3 and letting �j be the multiplicative character with �j(⇠t) = e
2⇡it
dj we

rewrite (13) as

N � qn�1 =
1

q

X

�2cF+
q ,� 6=�0

 
�(b)

nY

j=1

d�1X

k=1

�j(aj)
kG(�kj ,�)

!

=
1

q

X

�2cF+
q ,� 6=�0

X

(k1,...,kn),1kidi�1

�(b)�1
k1
(a1) · · ·�n

kn
(an)G(�1

k1 ,�) · · ·G(�n
kn ,�)

=
1

q

X

c2F⇥
q

X

(k1,...,kn),1kidi�1

�c(b)�1
k1
(a1) · · ·�n

kn
(an)G(�1

k1 ,�c) · · ·G(�n
kn ,�c)

=
1

q

X

(k1,...,kn),1kidi�1

G(�1
k1 ,�a1) · · ·G(�n

kn ,�an)
X

c2F⇥
q

�b(c)�1
k1
(c) · · ·�n

kn
(c)

(17)

=
1

q

X

(k1,...,kn),1kidi�1

G(�1
k1 ,�a1) · · ·G(�n

kn ,�an)G(�1
k1 · · ·�n

kn
,�b) (18)
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where in (17) we used Proposition 3.2 twice, to get

�j
kj(aj)G(�j

kj ,�c) = �j
kj(c)�j

kj(aj)G(�j
kj ,�1) = �j

kj(c)G(�j
kj ,�aj).

Now we apply Theorem 3.1 to get that |G(�kii ,�ai)| =
p
q. Note

(�1
k1 · · ·�n

kn
)(⇠t) = e

(2⇡i)
⇣

k1
d1

+···+ kn
dn

⌘
t

is the trivial character i↵ (k1, . . . , kn) 2 S. Hence |G(�1
k1 · · ·�n

kn
,�b)| = 1 if (k1, . . . , kn) 2 S

and
p
q otherwise. Using this and the triangle inequality, (18) becomes

|N � qn�1|  1

q
[q

n
2 |S|+ q

n+1
2 ((d1 � 1) · · · (dn � 1)� |S|)],

proving the theorem.

5 Applications to Waring’s Problem

Now we derive Small’s bound [3] for Waring’s constant g(d, q), the minimum n such that (12)
has a solution with d1 = · · · = dn = d for all b. By Lemma 4.1, g(d, q) = g(gcd(d, q � 1), q),
so it su�ces to consider the case d|q � 1.

First, note that su�cient condition for Waring’s constant to exist is that the set {yd|y 2
Fq} is not contained in a proper subfield of Fq. Since this set is generated multiplicatively

by ⇠d, and any subfield is multiplicatively generated by ⇠
pr�1

pk�1 for some k|d, writing q = pr

with p prime we need

pr � 1

pk � 1
- d for every proper divisor k of r. (19)

Apply Theorem 4.2 (dropping the term with M(d1, . . . , dn)) to get

N � qn�1 � (d� 1)nq
n�1
2 (20)

This is positive when

q
n�1
2 > (d� 1)n () n

2
(ln q � 2 ln(d� 1)) >

ln q

2
(21)

Thus we obtain the following bound for g(d, q):

Theorem 5.1: Suppose d|q � 1 and q > (d� 1)2. Then

g(d, q) 
�

ln q

ln q � 2 ln(d� 1)
+ 1

⌫
.
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Note that in particular, (21) for n = 2 allows us to make the “inverse” statement that if
q > (d� 1)4, then the equation yd1 + yd2 = b has a solution for any b 2 Fq. That is, for any d,
in any su�ciently large finite field every element can be written as a sum of 2 dth powers.

When (19) holds but q  (d � 1)2, we can still get a less exciting estimate for g(d, q)
using elementary methods [5]. Suppose q = pr, where p is prime. The dth powers span Fq

over Fp, so a subset, say a1, . . . , ar, forms a basis. Every element can be written as

b = c1a1 + · · ·+ crar, ci 2 Fp. (22)

We claim that each ci can be written as a sum of at most g(d0, p) dth powers, where d0 =
p�1

gcd( q�1
d ,p�1)

. Indeed, the dth powers in F⇥
q are the

�
q�1
d

�
th roots of unity, so the dth powers

of F⇥
q contained in F⇥

p are the gcd
�
q�1
d
, p� 1

�
th roots of unity, which are the d0th powers

of elements in F⇥
q . Since the product of two dth powers is also a dth power, (22) gives a

representation of b as a sum of rg(d0, p) kth powers.

g(d, q)  rg(d0, p), d0 =
p� 1

gcd
�
q�1
d
, p� 1

� . (23)

Now we bound g(d0, p). Let A be the set of d0th powers of elements of Fp. Let nA =
{a1+· · ·+an, ai 2 A}. Note that A\{0} is a subgroup of order p�1

d0 in F⇥
p . Note that (mA)\{0}

is a union of cosets of A\{0} of the multiplicative group F⇥
p since if a = yd

0
1 + · · ·+ yd

0
n 2 mA

then for any cd
0 2 A, cd

0
a = (cy1)d

0
+ · · ·+(cyn)d

0 2 mA. For any m, mA+{0, 1} ✓ (m+1)A,
implying that either mA = Fp or mA ⇢ (m+ 1)A. Since (mA)\{0} is a union of cosets, by
induction it must have at least min

�
p� 1,mp�1

d0

�
elements. Hence d0A = Fp. This shows

g(d0, p)  d0. (24)

Putting (23) and (24) together gives the following:

Theorem 5.2: Suppose q = pr satisfies (19). Then

g(d, q)  r · p� 1

gcd
�
q�1
d
, p� 1

� .

Note that we could have used the Cauchy-Davenport Theorem to conclude (24) imme-
diately. This theorem says that given subsets A1, . . . , An of Fp, the sumset A1 + · · · + An

contains at least min(p, |A1| + · · · + |An| � n + 1) elements. However, the above reasoning
with cosets is more powerful because it uses the structure of the set A. The argument can
be strengthened using Vosper’s Theorem, an “inverse” theorem to Cauchy-Davenport which
says that if |A1| + |A2|  p � 2, then |A1 + A2| = |A1| + |A2| � 1, i.e. equality holds in
Cauchy-Davenport, only when A1, A2 are arithmetic progressions with the same di↵erence.
Using this result, we can show that when p > 2d0+1, in the proof above, (m+1)A contains at
least two more cosets then mA (if it is not already equal to Fp), and that g(d0, q) 

⌅
d0

2

⇧
+1.

This approach is more combinatorial, while the proof of Theorem 5.1 is more algebraic. Both
approaches can be quite fruitful; for example combintorial arguments have given exact values
of Waring’s constant for certain values of d and q [6], where d|q � 1 is large relative to q.
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The bound in Theorem 5.1 is strong for q large relatively to d, but weak for q close
to (d � 1)2. The bound in Theorem 5.2 works for all d, q satisfying (19), but is weak for
large q. There are various other bounds for g(d, q) that are e↵ective di↵erent ranges of d, q;
for example, if q > d2, then g(d, q) < b8 ln qc + 1, which is stronger than the bound in
Theorem 5.1 for q close to d2, and depends only on q. A list of known bounds can be found
in [5].

6 Further Explorations

As a corollary of Theorem 5.1, we saw that given d, in every su�ciently large finite field
every element can be written as a sum of 2 dth powers. It is natural to ask how small a
subset of the dth powers we can choose so that the property above still holds. In other words,
we want a subset that is a thin basis. The following theorem, whose proof is modeled after
the existence of a thin basis for N0 [4], gives an answer.

Theorem 6.1: Let d|q � 1 be fixed and let A be the set of dth powers in Fq. Then there
exist constants C1, C2 such that for su�ciently large q, there exists a subset S ✓ A satisfying
the following:

1. S is a basis of order 2 for Fq.

2. S has at most C1

p
q ln q elements.

3. Every nonzero element of Fq has at most C2 ln q representations as a sum of 2 dth
powers.

Proof. All implicit constants in our proof depend on d alone.
We rely on the fact that by (20), for large q, the number of representations for each

residue as a sum of dth powers is approximately the same. Pick a random subset B of
the set of A\{0}, such that any nonzero element of A is included in B independently with

probability
q

Cd2 ln q
q

, where C > 8 is a constant. Let I denote the indicator function, that

is, I(P ) = 1 if P is a true statement, and I(P ) = 0 otherwise. Then the number of ways to
express b 2 F⇥

q as a sum of 2 numbers in B is

r2,B(b) =
X

i,j2A, i+j=b

I(i 2 B)I(j 2 B)

= 2
X

{i, j} 2 A, i 6= j,
i+ j = b, i, j 6= 0

I(i 2 B)I(j 2 B)

| {z }
(⇤)

+O(1). (25)

where the O(1) term is nonnegative. We made the sum is over all unordered pairs of distinct
elements, so that the values of the terms are independent of each other. Let Xb be the sum

(*) above. Note that Xb has q+O(q1/2)
2d2 summands: Indeed, by (20) with n = 2, there are

q + O(q1/2) solutions to yd1 + yd2 = b; there are at most 3d = O(1) solutions where one of
y1, y2 is equal to 0 or yd1 = yd2 ; we divide by d2 since at most d values of yi give the same
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value of ydi , and divide by 2 since we are considering unordered pairs. Taking the expected
value, and noting that the probability that i 2 B and j 2 B for fixed i 6= j is Cd2 ln q

q
,

E(Xb) =
q +O(q1/2)

2d2
· Cd2 ln q

q
=

C

2
ln q +O(q�1/2 ln q). (26)

Now we use the following.

Theorem 6.2 (Cherno↵’s Inequality): [4, Theorem 1.8] Let Xb = t1 + · · ·+ tn where the ti
are independent random variables taking the values 0 or 1. Then for any " > 0,

P (|X � E(X)| � "E(X))  2e�min("2/4,"/2)E(X).

Letting " = 1 and noting that the terms in the sum X are linearly independent, we get

P (|Xb � E(Xb)| � E(Xb))  2e�E(Xb)/4

= 2e�
1
4(

C ln q
2 +O(q�1/2 ln q))

= 2e�
C
8 ln(q)eO(q�1/2 ln q)

= 2q�
C
8 O(1)

Hence

P (0 < Xb < 2E(Xb) for each b) � 1�
X

b2F⇥
q

P (|Xb � E(X)| � E(X)) � 1� 2q1�
C
8 O(1).

Since C > 8, this is positive for any su�ciently large q. Thus there exists a set B such that
0 < Xb < 2E(Xb); by (25) and (26) this gives 0 < r2,B(b)  C ln q + O(q�1/2 ln q). Let l,m
denote the number of pairs (i, j) such that i, j 2 B and i + j is nonzero, zero, respectively.
Then

l =
X

b2F⇥
q

r2,B(b)  Cq ln q +O(q1/2 ln q), l +m = |B|2.

Note that at most |B| pairs in B sum to 0, so m  |B| and l � |B|2 � |B|. This gives
|B|2  |B|

|B|�1 l, and |B| = O(
p
q ln q). Let S = B [ {0}; then S is a basis of order 2 and

satisfies the desired conditions.

Next we find bounds for Waring’s constant for Z/mZ. Let G(d,m) denote the least
number n such that for all b 2 Z/mZ, there exist yi 2 Z/mZ with

yd1 + · · ·+ ydn ⌘ b (mod m).

First, we consider the case of a prime power pk; we divide into two cases based on whether
p divides d. If p does not divide d, then we can take advantage of the following.

Lemma 6.3 (Hensel’s Lemma): Suppose f is a polynomial with integer coe�cients, f(x) ⌘
m (mod ph) and f 0(x) 6⌘ 0 (mod p). Then there exists x0 = x + pt such that f(x0) ⌘ m
(mod ph+1).
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This allows us to get the following bound for Waring’s constant for Z/phZ in terms of
Waring’s constant for Z/pZ = Fp.

Theorem 6.4: Let p be a prime, h a positive integer. Then

g(d, p)  G(d, ph)  g(d, p) + 1.

Proof. Any residue modulo ph not divisible by p can be written as a sum of n = g(d, p) dth
powers. Indeed take any r not divisible by p; by definition of g(d, p) there exist y1, . . . , yn
such that

yd1 + · · ·+ ydn ⌘ r (mod p).

Without loss of generality, we can assume p does not divide y1. Since the polynomial xd has
derivative dxd�1, which is not zero modulo p when x 6= 0, by repeatedly applying Hensel’s
Lemma we can find y01 such that

y0d1 ⌘ r � (yd2 + · · ·+ ydn) (mod ph).

If r is divisible by p, then r � 1 is not divisible by p, so by the above we can find yi so that

yd1 + · · ·+ ydn ⌘ r � 1 (mod ph).

Adding 1 to both sides expresses r as a sum of n+1 dth powers. Thus G(d, ph)  g(d, p)+1.
The other inequality is obvious.

If p divides d, then we have to rely on the following theorem.

Theorem 6.5: Let p be prime and h a positive integer. Suppose d = p↵e, e - p, and let
d0 = pmin(↵,h) gcd(e, p� 1). Then G(d, ph)  2d0 for p odd and G(d, ph)  4d0 for p = 2.

Proof. After noting that the set of dth powers and the set of d0th powers in Z/phZ are the
same (by an argument similar to Lemma 4.1), the result follows from [2, Lemma 5.8-10].

Theorem 6.6: If a and b are relatively prime then

G(d, ab) = max(G(d, a), G(d, b))

Proof. Let n = max(G(d, a), G(d, b)). Any representation of a number as a sum of dth powers
modulo ab is also valid modulo a and modulo b, so G(d, ab) � n. Since n � G(d, a), G(d, b),
given a residue r modulo a, b, we can find xi, 1  i  n and yi, 1  i  n such that

xd
1 + · · ·+ xd

n ⌘ r (mod a)

yd1 + · · ·+ ydn ⌘ r (mod b)

By the Chinese Remainder Theorem we can choose zi so that zi ⌘ x1 (mod a) and zi ⌘ x2

(mod b). Then
zd1 + · · ·+ zdn ⌘ r (mod ab),

as needed.
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Together, these results provide a bound for Waring’s constant for any modulus, given
bounds for g(d, p).

Since Theorem 6.5 is rather weak, I tried to get a bound similar to Theorem 5.1 by
defining multiplicative and additive characters on Z/qZ, q = ph for odd p as follows:

�a(k) = e
2⇡iak

q

 (⇠r) = e
2⇡ir

(p�1)ph�1

where ⇠ is a primitive root modulo ph. Then we can define Gauss sums analogously. However,
the proof does not carry over, because rather than just having to exclude one term (namely,
0) in a sum over Z/qZ when dealing with multiplicative characters, we have to exclude every
multiple of p. This gives too many extra terms, and the errors were hard to bound, so I
could not find an analogue of the statement that |G( ,�)| = p

q for nontrivial characters. In
conclusion, the method of character sums really does take advantage of the coherent additive
and multiplicative structure in a finite field.
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