LECTURE #4: WOLFF'S $\frac{n+2}{2}$ RESULT: WE ARE IN THE 90'S!

ALEX IOSEVICH

October 25, 2000

ABSTRACT. Building on the discrete model of the previous lecture, we prove that the Hausdorff dimension of the Kakeya set is at least $\frac{n+2}{2}$.

In this lecture we shall prove a theorem due to Wolff, which says that the Hausdorff dimension of a Kakeya set in \mathbb{R}^n is at least $\frac{n+2}{2}$. In the previous lectures we have used Theorem 1.1 to deduce lower bounds on the Hausdorff dimension of a Kakeya set. This theorem is based on the properties of the Kakeya maximal operator where a function is averaged over tubes pointing in various directions. We shall see in a moment that one can also deduce information about the Hausdorff dimension of a Kakeya set by averaging characteristic functions of tubes instead. More precisely, we shall prove the following.

Theorem 9.1. Let Ω be a δ -separated subset of S^{n-1} . Suppose that

(9.1)
$$\left\| \sum_{e \in \Omega} \chi_{T_e^{\delta}} \right\|_{L^p(\mathbb{R}^n)} \lesssim \delta^{\frac{n}{p} - (n-1) - \epsilon},$$

for any $\epsilon > 0$. Then the Hausdorff dimension of a Kakeya set is at least $\frac{p}{p-1}$.

The proof is basically the same as before, so we'll be a bit sketchy. Let $\{B_j = B(x_j, r_j)\}$ denote the cover of a Kakeya set E by balls of radius r_j centered at x_j . As usual, we may assume that $r_j << 1$. By extracting a 2^{-k} -separated subset of the set Ω_k constructed in the proof of Theorem 1.1, we construct a subset of the sphere which we also call Ω (abuse of notation is so much fun), such that $\#\Omega \gtrsim 2^{k(n-1)}$, and

(9.2)
$$\int_{\cup_{j \in \Sigma_k} B_j} \sum_{e \in \Omega} \chi_{T_e^{2^{-k}}} \gtrsim 1$$

up to logarithmic factors, where, as before, $\Sigma_k = \{j : 2^{-k} \le r_j \le 2^{-k+1}\}$. By Holder, the left hand side of (9.2) is bounded above by

(9.3)
$$\left\| \sum_{e \in \Omega} \chi_{T_e^{\delta}} \right\|_{L^p(\mathbb{R}^n)} \times \left| \bigcup_{j \in \Sigma_k} B_j \right|^{\frac{1}{p'}},$$

Research supported in part by NSF grant DMS00-87339

which, by (9.1), is bounded above by

$$(9.4) (2^{-k})^{\frac{n}{p} - (n-1) - \epsilon} |\cup_{j \in \Sigma_k} B_j|^{\frac{1}{p'}}.$$

It follows that

(9.5)
$$|\Sigma_k| \gtrsim \left(2^{\frac{nk}{p}} 2^{-k(n-1)} 2^{-k\epsilon}\right)^{p'} 2^{nk},$$

which means that

(9.6)
$$\sum_{\Sigma_k} r_j^s \ge 2^{-ks} 2^{\frac{kp}{p-1}} 2^{-k\epsilon p'} \gtrsim 1,$$

since $s < \frac{p}{p-1}$. This completes the proof.

Theorem 9.2. The estimate (9.1) holds with $p = \frac{n+2}{n}$.

By Theorem 9.1 it follows that the Hausdorff dimension of a Kakeya set is at least $\frac{n+2}{2}$.

The heuristic. All theorems are true for a reason. Wolff's result is no exception. Cover a Kakeya set with balls of radius δ . We shall refer to these balls as "points". If the dimension of this set is d, we need around $\left(\frac{1}{\delta}\right)^d$ points. Since there is a line segment in every direction, we have around $\left(\frac{1}{\delta}\right)^{n-1}$ lines with $\frac{1}{\delta}$ points each. This means that we have roughly $\left(\frac{1}{\delta}\right)^{n-d}$ lines per point. This, in turn, implies that roughly $\left(\frac{1}{\delta}\right)^{n-d+1}$ lines intersect a given line. The key observation is that the lines that intersect a given a line are essentially disjoint. We shall refer to the collection of lines intersecting a given line as a hairbrush. The disjointness property implies that there are at least $\left(\frac{1}{\delta}\right)^{n-d+2}$ points in a hairbrush. Since a hairbrush lives inside our Kakeya set, we must have $\left(\frac{1}{\delta}\right)^{n-d+2} \lesssim \left(\frac{1}{\delta}\right)^d$, which means that $d \geq \frac{n+2}{2}$ as desired.

Making the above heuristic into a proof will hurt a little bit, but it will be worth it...

Bilinearization. The estimate (9.1) is equivalent to the estimate

(9.7)
$$\left\| \sum_{e \in \Omega} \sum_{e' \in \Omega} \chi_{T_e^{\delta}} \chi_{T_{e'}^{\delta}} \right\|_{\frac{p}{2}}^{\frac{p}{2}} \lesssim \delta^{n-p(n-1)}$$

up to ϵ (which we shall ignore from now on). We now play the separation game of Lecture #2. We have

(9.8)
$$\sum_{e \in \Omega} \sum_{e' \in \Omega} = \sum_{k=0}^{\log(1/\delta)} \sum_{|e-e'| \approx 2^{-k}} + \sum_{e=e'}.$$

We shall handle the first sum since the estimate for the second follows by the same argument. We no longer have Holder's inequality at our disposal since p/2 < 1, but we do

have the deep fact which says that $a+b \leq (a^q+b^q)^{\frac{1}{q}}$ if 0 < q < 1. This means that we just have to prove that

(9.9)
$$\sum_{k=0}^{\log(1/\delta)} \left\| \sum_{|e-e'|\approx 2^{-k}} \chi_{T_e^{\delta}} \chi_{T_{e'}^{\delta}} \right\|_{\frac{p}{2}}^{\frac{p}{2}} \lesssim \delta^{n-p(n-1)}.$$

As usual, we don't care about logarithmic quantities, so we just need to prove that

(9.10)
$$\left\| \sum_{|e-e'|\approx 2^{-k}} \chi_{T_e^{\delta}} \chi_{T_{e'}^{\delta}} \right\|_{\frac{p}{2}}^{\frac{p}{2}} \lesssim \delta^{n-p(n-1)}$$

for each k.

We now cover Ω by $\approx 2^{k(n-1)}$ finitely overlapping spherical caps of width $\approx 2^{-k}$ in such a way that given e, e' with $|e-e'| \approx 2^{-k}$ we can find a cap C containing both of them. Applying the pseudo-triangle inequality again, and using the fact that there are $\approx 2^{k(n-1)}$ caps, we see that it is enough to show that

(9.11)
$$\left\| \sum_{e,e' \in C \cap \Omega: |e-e'| \approx 2^{-k}} \chi_{T_e^{\delta}} \chi_{T_{e'}^{\delta}} \right\|_{\frac{p}{2}}^{\frac{p}{2}} \lesssim 2^{-k(n-1)} \delta^{n-p(n-1)}$$

for each cap C.

Exercise. It is enough to establish (9.11) for k = 0. Rescale...

This reduces matters to showing that

(9.12)
$$\left\| \sum_{e,e' \in C \cap \Omega: |e-e'| \approx 1} \chi_{T_e^{\delta}} \chi_{T_{e'}^{\delta}} \right\|_{\frac{p}{2}}^{\frac{p}{2}} \lesssim \delta^{n-p(n-1)}$$

for each cap C.

Applying the pseudo-triangle inequality again, we reduce matters to showing that

(9.13)
$$\left\| \sum_{e \in \Omega_1} \sum_{e' \in \Omega_2} \chi_{T_e^{\delta}} \chi_{T_{e'}^{\delta}} \right\|_{\frac{p}{2}}^{\frac{p}{2}} \lesssim \delta^{n-p(n-1)},$$

where Ω_1, Ω_2 are subsets of Ω separated by ≈ 1 .

The pigeon is back. Let

(9.14)
$$E_{\eta,\eta'} = \{ x : \sum_{e \in \Omega_1} \chi_{T_e^{\delta}}(x) \approx \eta, \sum_{e' \in \Omega_2} \chi_{T_{e'}^{\delta}}(x) \approx \eta' \}.$$

Now, (9.13) says that

$$(9.15) \qquad \int \left(\sum_{e \in \Omega_1} \chi_{T_e^{\delta}}(x)\right)^{\frac{p}{2}} \left(\sum_{e' \in \Omega_2} \chi_{T_{e'}^{\delta}}(x)\right)^{\frac{p}{2}} dx \lesssim \delta^{n-p(n-1)}.$$

The left hand side of (9.15) is bounded by

(9.16)
$$\sum_{\eta,\eta'} \eta^{\frac{p}{2}} \eta'^{\frac{p}{2}} |E_{\eta,\eta'}|,$$

where η, η' are dyadic parameters. Since the number of η 's and η' 's needed is logarithmic in $\frac{1}{\delta}$, we see that it is enough to show that

(9.17)
$$\eta^{\frac{p}{2}} \eta'^{\frac{p}{2}} |E_{\eta,\eta'}| \lesssim \delta^{n-p(n-1)},$$

for all η, η' that live between $\approx \delta^{-n}$ and ≈ 1 .

At this point, we insert $p = \frac{n+2}{n}$, so (9.17) takes the form

$$(9.18) (\eta \eta')^{\frac{n+2}{2n}} |E_{\eta,\eta'}| \lesssim \delta^{-\frac{n-2}{n}}.$$

We just did a bunch of things, but what do they mean? The numbers η and η' give us the number of 1-separated tubes a point x belongs to. Recall that our goal is to work with a "hairbrush", a collection of tubes intersecting a given tube. We are now ready to move in that direction.

Let's build a hairbrush. Let

(9.19)
$$\Omega_1^{\lambda} = \{ e \in \Omega_1 : |T_e^{\delta} \cap E_{\eta, \eta'}| \approx \lambda |T_e^{\delta}| \},$$

and

(9.20)
$$\Omega_2^{\lambda'} = \{ e' \in \Omega_2 : |T_{e'}^{\delta} \cap E_{\eta,\eta'}| \approx \lambda' |T_{e'}^{\delta}| \}.$$

We need to get some kind of control on the size of λ and λ' . By definition,

(9.21)
$$\int_{E_{\eta,\eta'}} \sum_{e \in \Omega_1} \sum_{e' \in \Omega_2} \chi_{T_e^{\delta}} \chi_{T_{e'}^{\delta}} \approx \eta \eta' |E_{\eta,\eta'}|.$$

If we consider $\lambda, \lambda' \gtrsim \delta^{100000n}$, the number of $\lambda's$ and λ 's is logarithmic in $\frac{1}{\delta}$, so the pigeonhole principle now tells us (up to logarithmic factors which we may ignore) that there exist λ, λ' dyadic such that

(9.22)
$$\int_{E_{\eta,\eta'}} \sum_{e \in \Omega_1^{\lambda}} \sum_{e' \in \Omega_2^{\lambda'}} \chi_{T_e^{\delta}} \chi_{T_{e'}^{\delta}} \gtrsim \eta \eta' |E_{\eta,\eta'}|.$$

We can see that λ may be chosen to be $\gtrsim \delta^{100000n}$ as follows. Consider $\int_{E_{\eta,\eta'}} \sum_{\{e \in \Omega_1: |T_e^\delta \cap E_{\eta,\eta'}| \approx \lambda |T_e^\delta|; \lambda <<\delta^{1000n}\}} \sum_{e' \in \Omega_2} \chi_{T_e^\delta} \chi_{T_{e'}^\delta}$. If this expression is $\gtrsim \eta \eta' |E_{\eta,\eta'}|$, it follows that $\lambda \gtrsim \eta \eta' |E_{\eta,\eta'}|$. Since $\eta \eta' < \delta^{-10000n}$, and $\lambda <<\delta^{100000n}$, (9.18) follows. Thus, the estimate (9.18) is only non-trivial if $\lambda \gtrsim \delta^{100000n}$.

It follows that

(9.23)
$$\int_{E_{\eta,\eta'}} \sum_{e \in \Omega_1^{\lambda}} \chi_{T_e^{\delta}} \gtrsim \eta |E_{\eta,\eta'}|.$$

Ignoring logarithmic factors yet again, we see that

$$(9.24) \lambda \ge \eta |E_{\eta,\eta'}|.$$

Invoking (9.22) again, we see that

(9.25)
$$\sum_{e' \in \Omega_2^{\lambda'}} \int_{T_{e'}^{\delta}} \sum_{e \in \Omega_1^{\lambda}} \chi_{T_e^{\delta}} \gtrsim \eta \eta' |E_{\eta, \eta'}|.$$

The number of directions in $\Omega_2^{\lambda'}$ is $\approx \delta^{-(n-1)}$, so there exists e' such that

(9.26)
$$\int_{T_{e'}^{\delta}} \sum_{e \in \Omega_{1}^{\lambda}} \chi_{T_{e}^{\delta}} \gtrsim \delta^{n-1} \eta \eta' |E_{\eta,\eta'}|,$$

which means that

(9.27)
$$\sum_{e \in \Omega_1^{\delta}} |T_e^{\delta} \cap T_{e'}^{\delta}| \gtrsim \delta^{n-1} \eta \eta' |E_{\eta,\eta'}|.$$

By (4.4), or, rather, its higher dimensional analog,

$$(9.28) |T_e^{\lambda} \cap T_{e'}^{\delta}| \lesssim \delta^n.$$

It follows that

(9.29)
$$\delta^n \# \{ e \in \Omega_1^{\lambda} : T_e^{\delta} \cap T_{e'}^{\delta} \neq \emptyset \} \gtrsim \delta^{n-1} \eta \eta' |E_{\eta,\eta'}|.$$

What have we just done? We found a tube $T_{e'}^{\delta}$ which intersects at least $\delta^{-1}\eta\eta'|E_{\eta,\eta'}|$ tubes T_{e}^{δ} , each at an angle ≈ 1 to $T_{e'}^{\delta}$, and are filled with density λ by $E_{\eta,\eta'}$. Notice how much harder this is than the heuristic above, or the finite field case for that matter! We are in for more pain...

Let \mathcal{T} denote the collection of all tubes T_e^{δ} which intersect $T_{e'}^{\delta}$. We have, by the above,

(9.30)
$$\#\mathcal{T} \gtrsim \delta^{-1} \eta \eta' |E_{\eta,\eta'}|.$$

By definition,

(9.31)
$$\int_{E_{\eta,\eta'}} \chi_{T_e^{\delta}} \approx \lambda \delta^{n-1}.$$

For technical reasons that will become clear in a moment, we shall monkey this into

(9.32)
$$\int_{E_{n,n'}} \chi_{T_e^{\delta} \cap \Sigma} \approx \lambda \delta^{n-1},$$

where

(9.33)
$$\Sigma = \{x : dist(x, T_{e'}^{\delta}) > C^{-1}\lambda\},\$$

where C is a very large constant. Summing over \mathcal{T} we get

(9.34)
$$\int_{E_{\eta,\eta'}} \sum_{\mathcal{T}} \chi_{T_e^{\delta} \cap \Sigma} \gtrsim \lambda \delta^{n-1} \# \mathcal{T}.$$

Cordoba is back. We apply Cauchy-Schwarz (you know, $2ab \le a^2 + b^2...$) to the left hand side of (9.34) to see that it is bounded by

which implies that

(9.36)
$$\left\| \sum_{\mathcal{T}} \chi_{T_e^{\delta} \cap \Sigma} \right\|_2 \gtrsim \lambda \delta^{n-1} \# \mathcal{T} |E_{\eta, \eta'}|^{-\frac{1}{2}}.$$

 L^2 estimate to be proved. We shall see that

(9.37)
$$\left\| \sum_{\mathcal{T}} \chi_{T_e^{\delta} \cap \Sigma} \right\|_2 \lesssim (\# \mathcal{T} \lambda^{-(n-2)} \delta^{n-1})^{\frac{1}{2}}.$$

Along with (9.36) this implies that

(9.38)
$$\lambda^n \delta^{n-1} \# \mathcal{T} \lesssim |E_{\eta,\eta'}|.$$

Taking (9.30) into account we get

$$(9.39) \lambda^n \delta^{n-2} \eta \eta' \lesssim 1.$$

In view of (9.24) we get

$$(9.40) \eta^{n+1} \eta' |E_{\eta,\eta'}| \lesssim \delta^{-(n-2)},$$

and, by symmetry,

(9.41)
$$\eta'^{n+1}\eta|E_{\eta,\eta'}| \lesssim \delta^{-(n-2)}.$$

Taking the geometric mean we get (9.18) and the proof is complete. No, wait! I still have to prove (9.37). Oh well...

Squaring and applying Fubini, we see that it is enough to show that

(9.42)
$$\sum_{T_{e_1}^{\delta} \in \mathcal{T}} \sum_{T_{e_2}^{\delta} \in \mathcal{T}} |T_{e_1}^{\delta} \cap T_{e_2}^{\delta} \cap \Sigma| \lesssim \#\mathcal{T} \lambda^{-(n-2)} \delta^{n-1}.$$

Dividing both sides by $\#\mathcal{T}$ we see that it suffices to show that

(9.43)
$$\sum_{\substack{T_{e_2}^{\delta} \in \mathcal{T}: T_{e_1}^{\delta} \cap T_{e_2}^{\delta} \cap \Sigma \neq \emptyset}} |T_{e_1}^{\delta} \cap T_{e_2}^{\delta} \cap \Sigma| \lesssim \lambda^{-(n-2)} \delta^{n-1}$$

for all $T_{e_1}^{\delta} \in \mathcal{T}$.

If $e_1 = e_2$, the estimate is trivial, so it is enough to show that

$$(9.44) \qquad \sum_{k=0}^{\log(1/\delta)} \sum_{T_{e_2}^{\delta} \in \mathcal{T}: \cos^{-1}(e_1 \cdot e_2) \approx 2^{-k}, \ T_{e_1}^{\delta} \cap T_{e_2}^{\delta} \cap \Sigma \neq \emptyset} |T_{e_1}^{\delta} \cap T_{e_2}^{\delta} \cap \Sigma| \lesssim \lambda^{-(n-2)} \delta^{n-1},$$

and we can again ignore the sum in k since the number of terms is logarithmic.

Key observation. Since the angle between e_1 and e_2 is about 2^{-k} , $T_{e_1}^{\delta} \cap T_{e_2}^{\delta}$ is essentially contained in a $\delta \times \cdots \times \delta \times 2^k \delta$ tube, so the measure of the intersection cannot exceed $2^k \delta^n$.

A consequence of this observation is that we just need to show (for a fixed k) that

(9.45)
$$\sum_{\substack{T_{e_2}^{\delta} \in \mathcal{T}: \cos^{-1}(e_1 \cdot e_2) \approx 2^{-k}, \ T_{e_1}^{\delta} \cap T_{e_2}^{\delta} \cap \Sigma \neq \emptyset}} 2^k \delta^n \lesssim \lambda^{-(n-2)} \delta^{n-1},$$

which can be rephrased as

This follows from the fact that the tubes in \mathcal{T} are δ -separated, and the following geometric fact.

Lemma 9.3. If $T_{e_1}^{\delta}$ and $T_{e_2}^{\delta}$ both intersect $T_{e'}^{\delta}$ at an angle ≈ 1 , and intersect each other in Σ at an angle $\approx 2^{-k}$, then $T_{e_2}^{\delta}$ lies within a $O(\delta/\lambda)$ neighborhood of the plane generated by the long axis of $T_{e'}^{\delta}$ and $T_{e_1}^{\delta}$, and when projected to that plane, makes an angle of $\approx 2^{-k}$ with $T_{e_1}^{\delta}$.