LECTURE #4: WOLFEF’S "T“ RESULT: WE ARE IN THE 90°’S!

ALEX [OSEVICH

October 25, 2000

ABsTRACT. Building on the discrete model of the previous lecture, we prove that the Haus-
dorff dimension of the Kakeya set is at least nT"'Q

In this lecture we shall prove a theorem due to Wolff, which says that the Hausdorff
dimension of a Kakeya set in R" is at least ”T” In the previous lectures we have used
Theorem 1.1 to deduce lower bounds on the Hausdorff dimension of a Kakeya set. This
theorem is based on the properties of the Kakeya maximal operator where a function is
averaged over tubes pointing in various directions. We shall see in a moment that one
can also deduce information about the Hausdorff dimension of a Kakeya set by averaging
characteristic functions of tubes instead. More precisely, we shall prove the following.

Theorem 9.1. Let Q be a 6-separated subset of S"~!. Suppose that
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for any € > 0. Then the Hausdorff dimension of a Kakeya set is at least 1%'

The proof is basically the same as before, so we’ll be a bit sketchy. Let {B; = B(zj,r;)}
denote the cover of a Kakeya set E by balls of radius r; centered at z;. As usual, we may
assume that r; << 1. By extracting a 2~ k_separated subset of the set Q constructed in
the proof of Theorem 1.1, we construct a subset of the sphere which we also call Q (abuse
of notation is so much fun), such that #Q > 2k(»=1 and
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up to logarithmic factors, where, as before, X = {j : 27F < r; <27k},
By Holder, the left hand side of (9.2) is bounded above by
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which, by (9.1), is bounded above by
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It follows that
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which means that
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since s < 1%. This completes the proof.

Theorem 9.2. The estimate (9.1) holds with p = ™2,
By Theorem 9.1 it follows that the Hausdorff dimension of a Kakeya set is at least "T”
The heuristic. All theorems are true for a reason. Wolft’s result is no exception. Cover

a Kakeya set with balls of radius 6. We shall refer to these balls as ”"points”. If the
dimension of this set is d, we need around (%) points. Since there is a line segment in
every direction, we have around (%)n_l lines with % points each. This means that we

—-d ;. . .. . . —d .
have roughly (%)n lines per point. This, in turn, implies that roughly (%)n ! ines
intersect a given line. The key observation is that the lines that intersect a given a line are
essentially disjoint. We shall refer to the collection of lines intersecting a given line as a
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hairbrush. The disjointness property implies that there are at least (%)n ? points in a

. . . o —d d
hairbrush. Since a hairbrush lives inside our Kakeya set, we must have (%)" +2 < (%) ,
which means that d > "T” as desired.

Making the above heuristic into a proof will hurt a little bit, but it will be worth it...

Bilinearization. The estimate (9.1) is equivalent to the estimate
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up to e (which we shall ignore from now on). We now play the separation game of Lecture
#2. We have
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We shall handle the first sum since the estimate for the second follows by the same
argument. We no longer have Holder’s inequality at our disposal since p/2 < 1, but we do
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have the deep fact which says that a +b < (a? + b?)
just have to prove that

if 0 < g < 1. This means that we
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As usual, we don’t care about logarithmic quantities, so we just need to prove that
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for each k.

We now cover Q by ~ 25("=1) finitely overlapping spherical caps of width ~ 2~ in such
a way that given e, e’ with |e — e/| ~ 27 we can find a cap C containing both of them.
Applying the pseudo-triangle inequality again, and using the fact that there are ~ 2k(n—1)
caps, we see that it is enough to show that
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for each cap C.
Exercise. It is enough to establish (9.11) for k = 0. Rescale...

This reduces matters to showing that
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for each cap C.
Applying the pseudo-triangle inequality again, we reduce matters to showing that
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where 4, (25 are subsets of 2 separated by ~ 1.
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The pigeon is back. Let
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Now, (9.13) says that
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The left hand side of (9.15) is bounded by
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where 7,7’ are dyadic parameters. Since the number of 7’s and 7’’s needed is logarithmic
in %, we see that it is enough to show that
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for all n, 7’ that live between ~ § ™ and ~ 1.
At this point, we insert p = HTH’ so (9.17) takes the form
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We just did a bunch of things, but what do they mean? The numbers 7 and 7’ give us
the number of 1-separated tubes a point x belongs to. Recall that our goal is to work with
a ”hairbrush”, a collection of tubes intersecting a given tube. We are now ready to move
in that direction.

Let’s build a hairbrush. Let

(9.19) QY ={ecQ:|T°NE, | ~\NT?},
and
(9.20) W ={e €Qy: TS NE, |~ N|TS|}.

We need to get some kind of control on the size of A and \'. By definition,

(9.21) / D> xrexos, = |Eyyl.
E e

n,n' ecfy e’ ey



LECTURE #4: WOLFF’S %}2 RESULT: WE ARE IN THE 90S! 5

If we consider X\, N > §09090" " the number of A's and X’s is logarithmic in %, so the

pigeonhole principle now tells us (up to logarithmic factors which we may ignore) that
there exist A\, M’ dyadic such that

(9.22) / Y. > xasxrs, 2 | Eyyl.
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We can see that A may be chosen to be > §190000n a5 follows.  Consider
fEn o’ 2 {e€u:ITSNE, i [RAITS A< <81000m} Xeren, XTe Xs, - 1f this expression is 2 01|y,
it follows that A 2 nn'|E, ,|. Since nn’ < 67109007 and X << §1000007 " (9.18) follows.

Thus, the estimate (9.18) is only non-trivial if A > §100000n
It follows that

(9.23) / > xrs 20l Enayl-
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Ignoring logarithmic factors yet again, we see that
(9.24) A > 1By .

Invoking (9.22) again, we see that
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The number of directions in 3 is ~ §~("=1), so there exists ¢’ such that
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which means that
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By (4.4), or, rather, its higher dimensional analog,
(9.28) TAN TS| < 6™
It follows that
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What have we just done? We found a tube T which intersects at least 6~ 1nn'|E, .|
tubes T?, each at an angle ~ 1 to T(f,, and are filled with density A by E, ,.. Notice how
much harder this is than the heuristic above, or the finite field case for that matter! We
are in for more pain...

Let T denote the collection of all tubes T’ e‘s which intersect T’ cfs,. We have, by the above,

(9.30) #T 2 6_17777,|E77,n"-

By definition,
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For technical reasons that will become clear in a moment, we shall monkey this into
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where

(9.33) ¥ = {z: dist(z,TS) > C7'\},

where C' is a very large constant. Summing over 7 we get
(934 | Soxmem 2214,
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Cordoba is back. We apply Cauchy-Schwarz (you know, 2ab < a2 + b2...) to the left
hand side of (9.34) to see that it is bounded by
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which implies that
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L? estimate to be proved. We shall see that
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Along with (9.36) this implies that
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Taking (9.30) into account we get
(9.39) A6 2y’ < 1.

In view of (9.24) we get
(9.40) N | By | S 52,
and, by symmetry,
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Taking the geometric mean we get (9.18) and the proof is complete. No, wait! T still
have to prove (9.37). Oh well...
Squaring and applying Fubini, we see that it is enough to show that

(9.42) S>> T T, NS S HTAT D
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Dividing both sides by #7 we see that it suffices to show that
(9.43) 3y T2 NTS N3 < A~ (=Dgnt
TS, eT-TS NTE, NE#D

for all T2 € 7.
If e; = eg, the estimate is trivial, so it is enough to show that

log(1/6)
(9.44) > > T2 NTE NE| S A~ Dgnt,
k=0 T} €T:cos™!(e1-e2)~2F, TS NTS NE#D
and we can again ignore the sum in £ since the number of terms is logarithmic.

Key observation. Since the angle between e; and e; is about 2-k Tgl ﬁTg2 is essentially

contained in a § x --- x § x 28§ tube, so the measure of the intersection cannot exceed
2kgm,

A consequence of this observation is that we just need to show (for a fixed k) that
(9.45) > okgn < \~(n=2)gn—1

T2, €T :cos™ ! (e1-e2)m2~F, TS NTS NT#D
which can be rephrased as
(9.46) H#{TS :cos Her-ex) 27 T2 NTE NE #£0} < 2 ks—IN—(n=2),

This follows from the fact that the tubes in 7 are é-separated, and the following geo-
metric fact.

Lemma 9.3. If T} and T2, both intersect TS at an angle ~ 1, and intersect each other
in¥ at an angle ~ 27%, then T?  lies within a O(6/)) neighborhood of the plane generated
by the long axis of TS and Tgl, and when projected to that plane, makes an angle of ~ 2%
with T?,.



