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ABSTRACT. In this installment of our weekly recreation, we shall see that the dimensions of
a Kakeya set in R" is at least "T‘H We shall then see that if we restate the problem in the

context of finite fields, the dimension of a coresponding ”"Kakeya” set in " is at least "T_z In

the next installment of the notes we shall see that these ideas lead to the proof that a Hausdorff

dimension of the Kakeya set in R" is at least nT_z

SECTION 7: WE MUST TAKE A STEP BACK BEFORE WE GO FORWARD

Th following estimate implies, via Theorem 1.1 that the Hausdorff dimension of a Kakeya
set is at least "TH In a sense, this is a step back, since we already know that the Hausdorff
dimension of a Kakeya set in R? is exactly 2. On the other hand, the "TH estimate applied
to all dimensions, and the method of proof will introduce some of the necessary machinery
and ideas needed to move forwards. The result in question is due to Drury.

Theorem 7.1. With the same notation as before, we have the following restricted weak-type
result.

" _n-1
(7.1) 155 1,00 < Cn™ 37 (|| aga -

Recalling Theorem 1.1 we see that Theorem 7.1 implies that the dimension of a Kakeya
set in R™ is at least "T"'l Let’s now prove the theorem. We must show that if F is a
measurable subset of R?, f = xg, and Q = {e € S"' : ff(e) > A}, then

(7.2) Q] < 5~ UA- (D) B2,
This would follow from showing that
(7.3) E| 26" T A7),
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Let {ng }j/il be a set of tubes with §-separated directions with
(7.4) IENTY | > AT |.

If we recall that (2.16) says that Ns(Q) > %, we see that (7.3) would follow from the
estimate
(7.5) |E| > 6" IA" M.

Let’s first suppose that no point of E belongs to no more than p tubes T(fj. This means
that

. <
(7.6) ZJ: Xenrs (%) < 1,
and integrating both sides over E shows that
-1 I —1 n—1
(7.7) Bl 2 p7t Y IENTY |2 u~ MG
J
by (7.4).

We must now deal with the case that some point zyp € E belongs to more than p tubes
ng . Without loss of generality assume that xy € Te‘sj ,7=1,..., u+1. Chose € small enough
so that

A
(7.8) T8, 0 Bex(wo)| < 5IT2,),

where By (zo) denotes the ball of radius e\ centered at zg.
It follows that for j < p+ 1,

A
(7.9) |[ENT. N B (o) > §|ng| Z A"

where B¢, (z) denotes the complement of the ball defined above.
We must now recall some definitions easy derivations from the previous lectures. We
have f(e,e’) = Arccos(e - €') by (4.2). The formula (4.3) easily generalizes in the form
0 0
< .
(ej.ex) +0 = 0(ej, ex)

Recall that g € Tfj NTS of j,j' < p+ 1. It follows that if
J

(7.10) diameter(Tfj (xo)N Tgk (x0)) < 7

100 6
A1 O(e; > —
(7 ) (6_77 ek) - € A’
then the sets
(7.12) ENT? N B\(zo) and EN T‘S N BS, (z0)

are disjoint.
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Home stretch. By (7.12) and (7.9), we see that

(7.13) |E| > NA§™ 1,

100 §

where N is the maximum possible cardinality of the == 3-

e;’s are 6-separated,

separated subset of {e; }5';1 . Since

s\ !
(7.14) N(X> > us™ 1,
which implies that

(7.15) N > "1y,
and, consequently,

(7.16) \E| > A" .

For a given pu, either (7.16) or (7.7) holds. This implies (7.5) since by setting (7.16) and
(7.7) equal to each other, we get p = ]‘,{—; This completes the proof of Theorem 7.1. Note

2
that technicalities aside, the proof of this result used only one essential fact- that if many ¢

tubes pointing in d-separated directions intersect at a point, then outside a small ball these
tubes are disjoint. Later, we shall see that one can improve on this argument by considering
a bunch of tubes intersecting a given tube, instead of a given point.

SECTION 8: BACK TO FINITE FIELDS

Before we grapple with the technical difficulties of the higher dimensional improvements,
we revisit the finite field set up encountered in Section VI. We prove the following general-
ization of Theorem 6.1.

Theorem 8.1. Let F; denote an n-dimensional vector space over a field of q elements. Let
E be a subset of By with the property that for all e € Ty \ (0,...,0) there erists x € Fy
such that z +te € E for allt € F,. Then there exists Cp, > 0 such that

(8.1) E|> Gl

We have already proved the two-dimensional case, so let n > 3. Since E contains a line
in every direction, it contains

(8.2)
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lines. We say that [; is a high multiplicity line if for at least I points of l;, the number of
lines that pass through each of those points is at least u 4+ 1, where p is a number to be
determined later. Given p > 0, there are two possibilities- the one where no high multiplicity
lines exist, and the one where at least one does.

We first treat the case where no high multiplicity lines exist. Let

(8.3) E'={zcE:zculs}.

Since each point of E’ belongs to at most yu I;s,

(8.4) E| > |E'|
(85) > p~t ) B N
J
(86) > M_lq . qn—l — M—lqn.

We must now deal with the case where at least one line of high multiplicity exists. Denote
this line by I, and let {II;} be the set of two-planes containing l;. By definition of high
multiplicity, there exist at least

q
8.7 2
(8.7) 1y
lines l;, j # k, that intersect l;. Each of these lines is contained in the unique II; since two

intersecting lines determine a plane. We now invoke Theorem 6.1 to see that
(8.8) [ENTLN (Fg \ k)| > qlLil,

where £; denotes the set of lines which are contained in a given II;. Since the sets corre-
sponding to the left hand side of (8.8) are pairwise disjoint, we can sum in i to see that
2
g qTp
8.9 E|> L|>qEL =18
(59) LEDMWCEICSS
by (8.7).

If we set p ~ ¢"z, the lower bounds in (8.9) and (8.6) agree, and the conclusion of
the theorem follows. As clever as this setup is, the only geometric property we really used
was that two non-intersecting lines determine a plane. This gives us some hope that the
conclusion of Theorem 8.1 can be improved.

In the next lecture, we shall suffer through the technicalities of the R” version of Theorem

8.1. We shall discover that we need no suffer all that much and, in fact, we shall actually
prove the corresponding statement for the maximal operator f;.



