LECTURE #2: ADVENTURES IN THE PLANE

ALEX [OSEVICH

September 20, 2000

ABSTRACT. The purpose of this lecture is to prove sharp estimates for the restriction operator
and the Kakeya maximal function in the plane, and use those to deduce that the Hausdorff
dimension of a Kakeya set in the plane is 2. We also discuss a discrete analog of the Kakeya
problem.

SECTION 4: THE KAKEYA MAXIMAL FUNCTION IN THE PLANE

Theorem 4.1. The restricted weak type (2,2) norm of the Kakeya mazximal operator in R

is < (log (%))% In other words, let E CR*, A€ (0,1], f = x5, and Q= {e € S : ff(e) >
A}. Then

(4.1) Q< <log (%)) %

In view of Lemma 1.1, this implies that the Hausdorff dimension of a Kakeya set in the
plane is exactly 2. To prove the lemma, we need a bit of trigonometry. Let

(4.2) (e, e') = Arccos(e - €'),

e, e € S'. It is not hard to see that

1)
4. ) T TS, <
(4.3) diameter(T?(a) N T (b)) < )10
for any a,b € R?, and, consequently,
5 5 82
4.4 T T35 <
(1.4 T2 NTEO) S g

Fix a 6-separated subset {6j};\/1=1 of Q@ with M > %l. (We can do that by (2.16)). For
each j, there is a tube T; = ng (a;) with |T; N E| > A|T;| = Aé.
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Sprint for the finish line. We have

(4.5) MM <D |T; N E|
J

(4.6) =/EZXTJ-

(4.7) < 1B} s,
J 2
(4.8) = [E]* | Y _|TinT;|
ik
1 52 :
4.9 < |E|?
(49) SIEM Y gaar T
1 52 :
4.10 < |E|2 _
(4.10) SIEF\ D rsee
ko {j:15—kI<3E}
1 1 7
(4.11) < |E|? (M&log (5)) .
It follows that
1 1 3
(4.12) MA6§|E|2<M610g (5)> ,

which implies (4.1) since M > %. This completes the proof of the lemma.
For our next trick, we will prove that the estimate (0.5) indeed holds in R?.
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SECTION 5: RESTRICTION CONJECTURE IN THE PLANE

Theorem 5.1. Let o denote the measure on the unit circle. Then

(5.1) ||fd<7||Lp(]R2) S ||f||Lp(da)

forp > 4.

We follow Terry Tao’s proof given in [TerryTao2]. We start with the following bilinear
setup.

Lemma 5.2. Suppose that f and g are supported on distinct 0-arcs of the circle whose
separation is also comparable to 0. Let do denote the Lebesque measure on the circle. Then

T 1
(5-2) |[fdogdally S 072 (1fl|z2(a0) 19/l 22 (40):

By Plancherel’s theorem, the estimate is equivalent to

(5-3) [(fdo) + (gdo)ly S 0721|1240yl 191] L2 (a0 -

This would follow from bilinear interpolation if we could show that

(5.4) |(fdo) * (gdo)||y S [1F1|L1 a0yl 191 L1 (o)
and
(5.5) |(Fdo) * (9d0)|| g S O7HI ] 1oo (a0 | 19]] 200 ()

While (5.4) follows courtesy of our Italian friend Fubini, (5.5) is the key estimate. Since
(5.6 fo < |1l paoydor and gdo < 1lgll o aoydo,

where I and J denote the #-arcs where f and g are supported, and doj,do; are the corre-
sponding measures, it suffices to show that

(5.7) |dor xdog|| <ot

Approximate do; by i X1., where I, is an € neighborhood of I. It suffices to show that

S0

o0

1
(5.8) HQ_GXIE *x do g

for all sufficiently small #’s. This follows since a translate of J intersects I on an arc of
length at most m ~ ef~1. This completes the proof of the lemma.
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From bilinear back to linear. By Marcinkiewicz’s interpolation theorem, it is enough to
prove that

— 1

(5.9) Ixpdall, S [E|7,

p > 4, where E is any measurable set. Equivalently, it is enough to show that
—_—— 2

(5.10) Ixedoxpdo|[y S |E|?,

under the same restrictions.

For every n > 0, divide the circle into 2™ equal arcs, so that each arc at each stage has
exactly two children at stage n + 1. We denote the set of all arcs at stage n by A,,. Define
I~ J,1,Je€A,if I and J are not adjacent, but their parents are. Note that for a given I
there are only finitely many J’s such that I ~ J.

For every = # y on the circle, there is exactly one pair of arcs I, J containing x and y
respectively, such that I =~ J. It follows that

o0
(5.11) Xpdoxgdo = xmdorxpdo; =Y Y. xedorxedo,.
I~J n=1{I,JeA,:I~J}

The first reduction is easy:

o0
(5.12) Ixedoxmdol|ly S Y xedorxgdos
n=1||{I,J€A,:Ix=J} P

2

What do we do with the £ norm? We are analysts, so we interpolate. We have
(5.13)

~J

{I,JEA, :I~J} o {LJEALIRT} {IeA,}

> Xpdorxpdos|| S Y |EnIEnJ|< Y 2MENI =277 E|
On the other hand, we may ignore the I = J restriction to obtain

(5.14) Y xpdorxgdos|| S| D) |ENI Y IEnJ|| =|E
{I,JeA,:I~JT} o {IeA,} {I€eAn}

The two estimates combine to say that

(5.15) Y xpdorxgdos|| < |E|min{|E[,27"}.

{I,JEA,:I=J} o
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—

Fefferman’s observation. As I ~ J vary, the supports of the functions XECFIX gdoy are
essentially disjoint. The point here is that if I ~ J and I’ ~ J’, on the same scale, then the
set theoretic sums I +.J and I' +.J' are essentially always disjoint. One can actually achieve
perfect orthogonality by not using all the pairs at once, and then applying the triangle
inequality.

An immediate consequence of Fefferman’s observation followed by Lemma 2.3 is that

2

o —— — 2
(5.16) Z xedorxedoy|| < Z [IxEdorxEdo ||,

{I,JEA, I~J} ) {I,JEA, :I~J}

(5.17) < 2% > |EnIIENJ|| <2%(E|min{27" |E[})?.
{I,JEA,:I=J}

Interpolating (5.13) and (5.14)-(5.15) using Holder’s inequality, and summing over n, we
get

— 2. 2n . —n 1-2 2
(5.18) Ixedoxedoll, S Y 27 (IE|min{27", [E[}) "7 S |E|>.
n=1

This completes the proof. We shall now follow Tom Wolff in giving ourselves a technicality
free way of looking at the Kakeya problem.

SECTION 6: LONG LIVE FINITE FIELDS!

Let Iy, denote an n-dimensional vector space over a field of ¢ elements. A natural variant
of the Kakeya problem in R" is the following. Let E be a subset of Fy with the property
that for all e € Fy \ (0,...,0) there exists x € Fy such that  +te € E for all t € F,. The
question we ask is, does there exist C',, > 0 such that

(6.1) |E| > C g7
We conclude this lecture with the following observation.

Theorem 6.1. Letn = 2, and suppose that E contains at least & points on each of m lines
with different slopes. Then

(6.2) |E| 2 myq.

Setting m = ¢ + 1 gives us (6.1) with n = 2. To prove Theorem 6.1, let {lj};.nzl be the
lines in question. Any two of these lines intersect at a point. It follows that

(63) Sam < S IEALI= Y [ Y, @)

z€EFE 7
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(6.4) <EP | Y ([ Y x,@

zeE 7

N
N[

N

(6.5) =EF YY) w@x @ | =B

i k z€E

DD Nk
ik

M

(6.6) = |E|? (m(m — 1+ )% <|E|*(2mq)

since m < g + 1. The results follows.
In the next section, we shall start a long, exciting and painful discussion of the higher
dimensional situation.



